from huggingface_hub import from_pretrained_keras from tensorflow import keras from PIL import Image import numpy as np import io def create_model() -> keras.Model: return from_pretrained_keras("keras-io/lowlight-enhance-mirnet") def run_model(image_bytes: io.BytesIO, model: keras.Model) -> Image.Image: image: Image.Image = Image.open(image_bytes) width: int height: int width, height = image.size image: Image.Image = image.resize((960, 640)) image_array1: np.ndarray = keras.utils.img_to_array(image) image_array2: np.ndarray = image_array1.astype("float32") / 255.0 image_array3: np.ndarray = np.expand_dims(image_array2, axis=0) output: np.ndarray = model.predict(image_array3) output_image_array1: np.ndarray = output[0] * 255.0 output_image_array2: np.ndarray = output_image_array1.clip(0, 255) output_image_array3: np.ndarray = output_image_array2.reshape( (np.shape(output_image_array2)[0], np.shape(output_image_array2)[1], 3) ) output_image_array4: np.ndarray = np.uint32(output_image_array3) output_image_array5: np.ndarray = output_image_array4.astype(np.uint8) output_image1: Image.Image = Image.fromarray(output_image_array5) output_image2: Image.Image = output_image1.resize((width, height)) # Uncomment if necessary: # output_image.save("user_data/output.jpg") return output_image2