File size: 1,365 Bytes
d6b7dee
19752d4
c34d8f1
 
b86c3d4
c34d8f1
b86c3d4
 
 
c34d8f1
b86c3d4
 
d6b7dee
 
 
 
 
 
af9f583
d6b7dee
 
2f7106e
f97bd22
2f7106e
d6b7dee
f51f824
b86c3d4
d6b7dee
c34d8f1
f51f824
2f7106e
d6b7dee
c34d8f1
f51f824
b86c3d4
c34d8f1
b86c3d4
 
 
 
 
d6b7dee
 
c34d8f1
b86c3d4
 
 
d6b7dee
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
import pandas as pd
import pycaret
from pycaret.datasets import get_data
# import pycaret clustering
from pycaret.clustering import *
# import pycaret anomaly
from pycaret.anomaly import *
# import ClusteringExperiment
from pycaret.clustering import ClusteringExperiment
# import AnomalyExperiment
from pycaret.anomaly import AnomalyExperiment

import matplotlib.pyplot as plt
import matplotlib as mpl

import numpy as np
import streamlit as st
import plotly.graph_objs as go

def main():
    # data = get_data('anomaly')
    insurance_claims = pd.read_csv ("./fraud_oracle.csv")
    s = setup(insurance_claims, session_id = 123)

    # exp_clustering = ClusteringExperiment()
    exp_anomaly = AnomalyExperiment()

    # init setup on exp
    # exp_clustering.setup(data, session_id = 123)
    exp_anomaly.setup(insurance_claims, session_id = 123)

    # train kmeans model
    # kmeans = create_model('kmeans')
    iforest = create_model('iforest')

    # kmeans_cluster = assign_model(kmeans)
    # kmeans_cluster

    iforest_anomalies = assign_model(iforest)
    iforest_anomalies

    if st.button("Prediction"):
        # plot pca cluster plot 
        # plot_model(kmeans, plot = 'cluster', display_format = 'streamlit')
        plot_model(iforest, plot = 'tsne', display_format = 'streamlit')
               
if __name__ == '__main__':
    main()