dperales commited on
Commit
09b69ad
·
1 Parent(s): 39de30e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -11
app.py CHANGED
@@ -149,22 +149,22 @@ if page == "Clustering Analysis":
149
 
150
  st.header("Clustering Plots")
151
  # plot pca cluster plot
152
- plot_model(cluster_model, plot = 'cluster', display_format = 'streamlit')
153
 
154
- if selected_model != 'ap':
155
- plot_model(cluster_model, plot = 'tsne', display_format = 'streamlit')
156
 
157
- if selected_model not in ('ap', 'meanshift', 'dbscan', 'optics'):
158
- plot_model(cluster_model, plot = 'elbow', display_format = 'streamlit')
159
 
160
- if selected_model not in ('ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics'):
161
- plot_model(cluster_model, plot = 'silhouette', display_format = 'streamlit')
162
 
163
- if selected_model not in ('ap', 'sc', 'hclust', 'dbscan', 'optics', 'birch'):
164
- plot_model(cluster_model, plot = 'distance', display_format = 'streamlit')
165
 
166
- if selected_model != 'ap':
167
- plot_model(cluster_model, plot = 'distribution', display_format = 'streamlit')
168
 
169
  # Create a Classification Model to extract feature importance
170
  st.header("Feature Importance")
@@ -172,6 +172,8 @@ if page == "Clustering Analysis":
172
  s = setup(cluster_model_2, target = 'Cluster')
173
  lr = create_model('lr')
174
  # this is how you can recreate the table
 
 
175
  feat_imp = pd.DataFrame({'Feature': get_config('X_train').columns, 'Value' : abs(lr.coef_[0])}).sort_values(by='Value', ascending=False)
176
  # sort by feature importance value and filter top 10
177
  feat_imp = feat_imp.sort_values(by='Value', ascending=False).head(10)
 
149
 
150
  st.header("Clustering Plots")
151
  # plot pca cluster plot
152
+ # plot_model(cluster_model, plot = 'cluster', display_format = 'streamlit')
153
 
154
+ # if selected_model != 'ap':
155
+ # plot_model(cluster_model, plot = 'tsne', display_format = 'streamlit')
156
 
157
+ # if selected_model not in ('ap', 'meanshift', 'dbscan', 'optics'):
158
+ # plot_model(cluster_model, plot = 'elbow', display_format = 'streamlit')
159
 
160
+ # if selected_model not in ('ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics'):
161
+ # plot_model(cluster_model, plot = 'silhouette', display_format = 'streamlit')
162
 
163
+ # if selected_model not in ('ap', 'sc', 'hclust', 'dbscan', 'optics', 'birch'):
164
+ # plot_model(cluster_model, plot = 'distance', display_format = 'streamlit')
165
 
166
+ # if selected_model != 'ap':
167
+ # plot_model(cluster_model, plot = 'distribution', display_format = 'streamlit')
168
 
169
  # Create a Classification Model to extract feature importance
170
  st.header("Feature Importance")
 
172
  s = setup(cluster_model_2, target = 'Cluster')
173
  lr = create_model('lr')
174
  # this is how you can recreate the table
175
+ print("Number of columns in X_train:", len(get_config('X_train').columns))
176
+ print("Number of coefficients in lr:", len(lr.coef_[0]))
177
  feat_imp = pd.DataFrame({'Feature': get_config('X_train').columns, 'Value' : abs(lr.coef_[0])}).sort_values(by='Value', ascending=False)
178
  # sort by feature importance value and filter top 10
179
  feat_imp = feat_imp.sort_values(by='Value', ascending=False).head(10)