Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -142,7 +142,7 @@ def main():
|
|
142 |
|
143 |
with st.spinner("Analyzing..."):
|
144 |
#with col2:
|
145 |
-
st.markdown("<br><br><br><br>", unsafe_allow_html=True)
|
146 |
# train kmeans model
|
147 |
cluster_model = create_model(selected_model, num_clusters = selected_clusters)
|
148 |
|
@@ -207,123 +207,123 @@ def main():
|
|
207 |
st.bar_chart(feat_imp.set_index('Feature'))
|
208 |
|
209 |
elif page == "Anomaly Detection":
|
210 |
-
with col1:
|
211 |
-
|
212 |
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
s = setup(insurance_claims_reduced, session_id = 123, remove_multicollinearity=p_remove_multicollinearity, multicollinearity_threshold=p_multicollinearity_threshold,
|
281 |
-
# remove_outliers=p_remove_outliers, outliers_method=p_outliers_method,
|
282 |
-
transformation=p_transformation,
|
283 |
-
normalize=p_normalize, pca=p_pca, pca_method=p_pca_method)
|
284 |
-
|
285 |
-
exp_anomaly = AnomalyExperiment()
|
286 |
-
# init setup on exp
|
287 |
-
exp_anomaly.setup(insurance_claims_reduced, session_id = 123)
|
288 |
-
|
289 |
-
with st.spinner("Analyzing..."):
|
290 |
-
with col2:
|
291 |
-
st.markdown("<br><br><br><br>", unsafe_allow_html=True)
|
292 |
-
# train model
|
293 |
-
anomaly_model = create_model(selected_model)
|
294 |
-
|
295 |
-
with st.expander("Assign Model", expanded=False):
|
296 |
-
#st.header("Assign Model")
|
297 |
-
anomaly_model_2 = assign_model(anomaly_model)
|
298 |
-
anomaly_model_2
|
299 |
-
|
300 |
-
with st.expander("Anomaly Metrics", expanded=False):
|
301 |
-
#st.header("Anomaly Metrics")
|
302 |
-
anomaly_results = pull()
|
303 |
-
anomaly_results
|
304 |
-
|
305 |
-
with st.expander("Anomaly Plots", expanded=False):
|
306 |
-
if graph_select:
|
307 |
-
# plot
|
308 |
-
#st.header("Anomaly Plots")
|
309 |
-
plot_model(anomaly_model, plot = 'tsne', display_format = 'streamlit')
|
310 |
-
plot_model(anomaly_model, plot = 'umap', display_format = 'streamlit')
|
311 |
-
|
312 |
-
with st.expander("Feature Importance", expanded=False):
|
313 |
-
if graph_select and feat_imp_select:
|
314 |
-
# Create a Classification Model to extract feature importance
|
315 |
-
#st.header("Feature Importance")
|
316 |
-
from pycaret.classification import setup, create_model, get_config
|
317 |
-
s = setup(anomaly_model_2, target = 'Anomaly')
|
318 |
-
lr = create_model('lr')
|
319 |
-
# this is how you can recreate the table
|
320 |
-
feat_imp = pd.DataFrame({'Feature': get_config('X_train').columns, 'Value' : abs(lr.coef_[0])}).sort_values(by='Value', ascending=False)
|
321 |
-
# sort by feature importance value and filter top 10
|
322 |
-
feat_imp = feat_imp.sort_values(by='Value', ascending=False).head(10)
|
323 |
-
# Display the filtered table in Streamlit
|
324 |
-
# st.dataframe(feat_imp)
|
325 |
-
# Display the filtered table as a bar chart in Streamlit
|
326 |
-
st.bar_chart(feat_imp.set_index('Feature'))
|
327 |
try:
|
328 |
main()
|
329 |
except Exception as e:
|
|
|
142 |
|
143 |
with st.spinner("Analyzing..."):
|
144 |
#with col2:
|
145 |
+
#st.markdown("<br><br><br><br>", unsafe_allow_html=True)
|
146 |
# train kmeans model
|
147 |
cluster_model = create_model(selected_model, num_clusters = selected_clusters)
|
148 |
|
|
|
207 |
st.bar_chart(feat_imp.set_index('Feature'))
|
208 |
|
209 |
elif page == "Anomaly Detection":
|
210 |
+
#with col1:
|
211 |
+
st.header('Anomaly Detection')
|
212 |
|
213 |
+
st.write(
|
214 |
+
"""
|
215 |
+
"""
|
216 |
+
)
|
217 |
+
|
218 |
+
# import pycaret anomaly
|
219 |
+
from pycaret.anomaly import setup, create_model, assign_model, pull, plot_model
|
220 |
+
# import AnomalyExperiment
|
221 |
+
from pycaret.anomaly import AnomalyExperiment
|
222 |
+
|
223 |
+
# Display the list of CSV files
|
224 |
+
directory = "./"
|
225 |
+
all_files = os.listdir(directory)
|
226 |
+
# Filter files to only include CSV files
|
227 |
+
csv_files = [file for file in all_files if file.endswith(".csv")]
|
228 |
+
# Select a CSV file from the list
|
229 |
+
selected_csv = st.selectbox("Select a CSV file from the list", ["None"] + csv_files)
|
230 |
+
|
231 |
+
# Upload the CSV file
|
232 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
233 |
+
|
234 |
+
# Define the unsupervised model
|
235 |
+
anomalymodel = ['abod', 'cluster', 'cof', 'iforest', 'histogram', 'knn', 'lof', 'svm', 'pca', 'mcd', 'sod', 'sos']
|
236 |
+
selected_model = st.selectbox("Choose an anomaly model", anomalymodel)
|
237 |
+
|
238 |
+
# Read and display the CSV file
|
239 |
+
if selected_csv != "None" or uploaded_file is not None:
|
240 |
+
if uploaded_file:
|
241 |
+
try:
|
242 |
+
delimiter = ','
|
243 |
+
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter)
|
244 |
+
except ValueError:
|
245 |
+
delimiter = '|'
|
246 |
+
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter, encoding='latin-1')
|
247 |
+
else:
|
248 |
+
insurance_claims = pd.read_csv(selected_csv)
|
249 |
+
|
250 |
+
num_rows = int(insurance_claims.shape[0]*int(num_lines)/100)
|
251 |
+
insurance_claims_reduced = insurance_claims.head(num_rows)
|
252 |
+
st.write("Rows to be processed: " + str(num_rows))
|
253 |
+
|
254 |
+
all_columns = insurance_claims_reduced.columns.tolist()
|
255 |
+
selected_columns = st.multiselect("Choose columns", all_columns, default=all_columns)
|
256 |
+
insurance_claims_reduced = insurance_claims_reduced[selected_columns].copy()
|
257 |
+
|
258 |
+
with st.expander("Inference Description", expanded=True):
|
259 |
+
insurance_claims_reduced.describe().T
|
260 |
+
|
261 |
+
with st.expander("Head Map", expanded=True):
|
262 |
+
cat_col = insurance_claims_reduced.select_dtypes(include=['object']).columns
|
263 |
+
num_col = insurance_claims_reduced.select_dtypes(exclude=['object']).columns
|
264 |
+
|
265 |
+
# insurance_claims[num_col].hist(bins=15, figsize=(20, 15), layout=(5, 4))
|
266 |
+
# Calculate the correlation matrix
|
267 |
+
corr_matrix = insurance_claims_reduced[num_col].corr()
|
268 |
+
# Create a Matplotlib figure
|
269 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
270 |
+
# Create a heatmap using seaborn
|
271 |
+
#st.header("Heat Map")
|
272 |
+
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', ax=ax)
|
273 |
+
# Set the title for the heatmap
|
274 |
+
ax.set_title('Correlation Heatmap')
|
275 |
+
# Display the heatmap in Streamlit
|
276 |
+
st.pyplot(fig)
|
277 |
|
278 |
+
if st.button("Prediction"):
|
279 |
+
|
280 |
+
s = setup(insurance_claims_reduced, session_id = 123, remove_multicollinearity=p_remove_multicollinearity, multicollinearity_threshold=p_multicollinearity_threshold,
|
281 |
+
# remove_outliers=p_remove_outliers, outliers_method=p_outliers_method,
|
282 |
+
transformation=p_transformation,
|
283 |
+
normalize=p_normalize, pca=p_pca, pca_method=p_pca_method)
|
284 |
+
|
285 |
+
exp_anomaly = AnomalyExperiment()
|
286 |
+
# init setup on exp
|
287 |
+
exp_anomaly.setup(insurance_claims_reduced, session_id = 123)
|
288 |
+
|
289 |
+
with st.spinner("Analyzing..."):
|
290 |
+
#with col2:
|
291 |
+
#st.markdown("<br><br><br><br>", unsafe_allow_html=True)
|
292 |
+
# train model
|
293 |
+
anomaly_model = create_model(selected_model)
|
294 |
+
|
295 |
+
with st.expander("Assign Model", expanded=False):
|
296 |
+
#st.header("Assign Model")
|
297 |
+
anomaly_model_2 = assign_model(anomaly_model)
|
298 |
+
anomaly_model_2
|
299 |
+
|
300 |
+
with st.expander("Anomaly Metrics", expanded=False):
|
301 |
+
#st.header("Anomaly Metrics")
|
302 |
+
anomaly_results = pull()
|
303 |
+
anomaly_results
|
304 |
+
|
305 |
+
with st.expander("Anomaly Plots", expanded=False):
|
306 |
+
if graph_select:
|
307 |
+
# plot
|
308 |
+
#st.header("Anomaly Plots")
|
309 |
+
plot_model(anomaly_model, plot = 'tsne', display_format = 'streamlit')
|
310 |
+
plot_model(anomaly_model, plot = 'umap', display_format = 'streamlit')
|
311 |
+
|
312 |
+
with st.expander("Feature Importance", expanded=False):
|
313 |
+
if graph_select and feat_imp_select:
|
314 |
+
# Create a Classification Model to extract feature importance
|
315 |
+
#st.header("Feature Importance")
|
316 |
+
from pycaret.classification import setup, create_model, get_config
|
317 |
+
s = setup(anomaly_model_2, target = 'Anomaly')
|
318 |
+
lr = create_model('lr')
|
319 |
+
# this is how you can recreate the table
|
320 |
+
feat_imp = pd.DataFrame({'Feature': get_config('X_train').columns, 'Value' : abs(lr.coef_[0])}).sort_values(by='Value', ascending=False)
|
321 |
+
# sort by feature importance value and filter top 10
|
322 |
+
feat_imp = feat_imp.sort_values(by='Value', ascending=False).head(10)
|
323 |
+
# Display the filtered table in Streamlit
|
324 |
+
# st.dataframe(feat_imp)
|
325 |
+
# Display the filtered table as a bar chart in Streamlit
|
326 |
+
st.bar_chart(feat_imp.set_index('Feature'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
try:
|
328 |
main()
|
329 |
except Exception as e:
|