# app.py import streamlit as st import mlflow import pandas as pd # Set the MLflow tracking URI (e.g., local file system or a remote server) mlflow.set_tracking_uri("http://localhost:5000") def main(): st.title("Streamlit and MLflow Integration") # Retrieve the list of experiments experiments = mlflow.list_experiments() experiment_names = [exp.name for exp in experiments] experiment_id_map = {exp.name: exp.experiment_id for exp in experiments} # Create a dropdown menu to select an experiment selected_experiment = st.selectbox("Select an experiment:", experiment_names) # Get the runs for the selected experiment if selected_experiment: experiment_id = experiment_id_map[selected_experiment] runs = mlflow.search_runs(experiment_ids=[experiment_id]) # Display the runs in a table st.write("Runs for the selected experiment:") st.write(runs) if __name__ == "__main__": main()