dqnguyen's picture
Update app.py
fe2431f
raw
history blame
1 kB
# coding: utf8
import gradio as gr
from transformers import pipeline
pipeline = pipeline(task="image-classification", model="dqnguyen/vit-base_diabetic_ulcer_image_classification")
def predict(image):
predictions = pipeline(image)
#return {p["label"]: p["score"] for p in predictions}
results = {}
for p in predictions:
if p["label"] == "MoHat":
results["Granulation tissue (Mô hạt)"] = p["score"]
elif p["label"] == "MoGiaMacNhiemKhuan":
results["Pseudomembranous tissue with a bacterial infection (Mô giả mạc nhiễm khuẩn)"] = p["score"]
elif p["label"] == "MoHoaiTu":
results["Necrotic tissue (Mô hoại tử)"] = p["score"]
return results
gr.Interface(
predict,
inputs=gr.inputs.Image(label="Upload an image (Tải một bức ảnh vét loét tiểu đường)", type="filepath"),
outputs=gr.outputs.Label(num_top_classes=5),
title="Diabetic Ulcer Image Classification",
).launch()