Spaces:
Sleeping
Sleeping
File size: 1,218 Bytes
3114cc4 0d798b8 3114cc4 ec3cee2 0d798b8 3114cc4 e65263a 0d798b8 e65263a 0d798b8 af4f405 e65263a ec3cee2 902ccf7 0d798b8 af4f405 ec3cee2 af4f405 ec3cee2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
import cv2
from geti_sdk.deployment import Deployment
from geti_sdk.utils import show_image_with_annotation_scene
#Load models
deployment = Deployment.from_folder("deployments")
deployment.load_inference_models(device="CPU")
def resize_image(image, target_dimension):
height, width = image.shape[:2]
max_dimension = max(height, width)
scale_factor = target_dimension / max_dimension
new_width = int(width * scale_factor)
new_height = int(height * scale_factor)
resized_image = cv2.resize(image, (new_width, new_height))
return resized_image
def infer(image):
if image is None:
return None, 'Error: No image provided'
image = resize_image(image, 1200)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
prediction = deployment.infer(image_rgb)
output = show_image_with_annotation_scene(image, prediction, show_results=False)
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
return output, prediction.overview
demo = gr.Interface(
fn=infer,
inputs="image",
outputs=["image", "text"],
allow_flagging='manual',
flagging_dir='flagged',
examples=[["eggsample1.jpg"], ["eggsample2.jpg"]]
)
demo.launch() |