Spaces:
Running
Running
Commit
·
0fe2a53
1
Parent(s):
2832c43
Add application files
Browse files- .gitignore +200 -0
- Dockerfile +24 -0
- LICENSE +21 -0
- __init__.py +0 -0
- app.py +135 -0
- config.py +5 -0
- examples/AI-generate.png +0 -0
- examples/Blake_Lively.png +0 -0
- examples/cat.jpg +0 -0
- examples/cat2.jpg +0 -0
- examples/landscape.jpg +0 -0
- examples/luffy.jpg +0 -0
- examples/luffy2.jpg +0 -0
- examples/naruto.png +0 -0
- examples/old_image.jpg +0 -0
- requirements.txt +20 -0
- srcnn.py +94 -0
- style.css +11 -0
- upsample.py +144 -0
- utils.py +165 -0
- weights/srcnn.pth +3 -0
.gitignore
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Created by https://www.toptal.com/developers/gitignore/api/python,visualstudiocode,metals
|
2 |
+
# Edit at https://www.toptal.com/developers/gitignore?templates=python,visualstudiocode,metals
|
3 |
+
|
4 |
+
### Metals ###
|
5 |
+
.metals/
|
6 |
+
.bloop/
|
7 |
+
project/**/metals.sbt
|
8 |
+
|
9 |
+
### Python ###
|
10 |
+
# Byte-compiled / optimized / DLL files
|
11 |
+
__pycache__/
|
12 |
+
*.py[cod]
|
13 |
+
*$py.class
|
14 |
+
|
15 |
+
# C extensions
|
16 |
+
*.so
|
17 |
+
|
18 |
+
# Distribution / packaging
|
19 |
+
.Python
|
20 |
+
build/
|
21 |
+
develop-eggs/
|
22 |
+
dist/
|
23 |
+
downloads/
|
24 |
+
eggs/
|
25 |
+
.eggs/
|
26 |
+
lib/
|
27 |
+
lib64/
|
28 |
+
parts/
|
29 |
+
sdist/
|
30 |
+
var/
|
31 |
+
wheels/
|
32 |
+
share/python-wheels/
|
33 |
+
*.egg-info/
|
34 |
+
.installed.cfg
|
35 |
+
*.egg
|
36 |
+
MANIFEST
|
37 |
+
|
38 |
+
# PyInstaller
|
39 |
+
# Usually these files are written by a python script from a template
|
40 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
41 |
+
*.manifest
|
42 |
+
*.spec
|
43 |
+
|
44 |
+
# Installer logs
|
45 |
+
pip-log.txt
|
46 |
+
pip-delete-this-directory.txt
|
47 |
+
|
48 |
+
# Unit test / coverage reports
|
49 |
+
htmlcov/
|
50 |
+
.tox/
|
51 |
+
.nox/
|
52 |
+
.coverage
|
53 |
+
.coverage.*
|
54 |
+
.cache
|
55 |
+
nosetests.xml
|
56 |
+
coverage.xml
|
57 |
+
*.cover
|
58 |
+
*.py,cover
|
59 |
+
.hypothesis/
|
60 |
+
.pytest_cache/
|
61 |
+
cover/
|
62 |
+
|
63 |
+
# Translations
|
64 |
+
*.mo
|
65 |
+
*.pot
|
66 |
+
|
67 |
+
# Django stuff:
|
68 |
+
*.log
|
69 |
+
local_settings.py
|
70 |
+
db.sqlite3
|
71 |
+
db.sqlite3-journal
|
72 |
+
|
73 |
+
# Flask stuff:
|
74 |
+
instance/
|
75 |
+
.webassets-cache
|
76 |
+
|
77 |
+
# Scrapy stuff:
|
78 |
+
.scrapy
|
79 |
+
|
80 |
+
# Sphinx documentation
|
81 |
+
docs/_build/
|
82 |
+
|
83 |
+
# PyBuilder
|
84 |
+
.pybuilder/
|
85 |
+
target/
|
86 |
+
|
87 |
+
# Jupyter Notebook
|
88 |
+
.ipynb_checkpoints
|
89 |
+
|
90 |
+
# IPython
|
91 |
+
profile_default/
|
92 |
+
ipython_config.py
|
93 |
+
|
94 |
+
# pyenv
|
95 |
+
# For a library or package, you might want to ignore these files since the code is
|
96 |
+
# intended to run in multiple environments; otherwise, check them in:
|
97 |
+
# .python-version
|
98 |
+
|
99 |
+
# pipenv
|
100 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
101 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
102 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
103 |
+
# install all needed dependencies.
|
104 |
+
#Pipfile.lock
|
105 |
+
|
106 |
+
# poetry
|
107 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
108 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
109 |
+
# commonly ignored for libraries.
|
110 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
111 |
+
#poetry.lock
|
112 |
+
|
113 |
+
# pdm
|
114 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
115 |
+
#pdm.lock
|
116 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
117 |
+
# in version control.
|
118 |
+
# https://pdm.fming.dev/#use-with-ide
|
119 |
+
.pdm.toml
|
120 |
+
|
121 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
122 |
+
__pypackages__/
|
123 |
+
|
124 |
+
# Celery stuff
|
125 |
+
celerybeat-schedule
|
126 |
+
celerybeat.pid
|
127 |
+
|
128 |
+
# SageMath parsed files
|
129 |
+
*.sage.py
|
130 |
+
|
131 |
+
# Environments
|
132 |
+
.env
|
133 |
+
.venv
|
134 |
+
env/
|
135 |
+
venv/
|
136 |
+
ENV/
|
137 |
+
env.bak/
|
138 |
+
venv.bak/
|
139 |
+
|
140 |
+
# Spyder project settings
|
141 |
+
.spyderproject
|
142 |
+
.spyproject
|
143 |
+
|
144 |
+
# Rope project settings
|
145 |
+
.ropeproject
|
146 |
+
|
147 |
+
# mkdocs documentation
|
148 |
+
/site
|
149 |
+
|
150 |
+
# mypy
|
151 |
+
.mypy_cache/
|
152 |
+
.dmypy.json
|
153 |
+
dmypy.json
|
154 |
+
|
155 |
+
# Pyre type checker
|
156 |
+
.pyre/
|
157 |
+
|
158 |
+
# pytype static type analyzer
|
159 |
+
.pytype/
|
160 |
+
|
161 |
+
# Cython debug symbols
|
162 |
+
cython_debug/
|
163 |
+
|
164 |
+
# PyCharm
|
165 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
166 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
167 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
168 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
169 |
+
#.idea/
|
170 |
+
|
171 |
+
### Python Patch ###
|
172 |
+
# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration
|
173 |
+
poetry.toml
|
174 |
+
|
175 |
+
# ruff
|
176 |
+
.ruff_cache/
|
177 |
+
|
178 |
+
# LSP config files
|
179 |
+
pyrightconfig.json
|
180 |
+
|
181 |
+
### VisualStudioCode ###
|
182 |
+
.vscode/*
|
183 |
+
!.vscode/settings.json
|
184 |
+
!.vscode/tasks.json
|
185 |
+
!.vscode/launch.json
|
186 |
+
!.vscode/extensions.json
|
187 |
+
!.vscode/*.code-snippets
|
188 |
+
|
189 |
+
# Local History for Visual Studio Code
|
190 |
+
.history/
|
191 |
+
|
192 |
+
# Built Visual Studio Code Extensions
|
193 |
+
*.vsix
|
194 |
+
|
195 |
+
### VisualStudioCode Patch ###
|
196 |
+
# Ignore all local history of files
|
197 |
+
.history
|
198 |
+
.ionide
|
199 |
+
|
200 |
+
# End of https://www.toptal.com/developers/gitignore/api/python,visualstudiocode,metals
|
Dockerfile
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM pytorch/pytorch:1.13.1-cuda11.6-cudnn8-devel
|
2 |
+
|
3 |
+
# Arguments to build Docker Image using CUDA
|
4 |
+
ARG USE_CUDA=0
|
5 |
+
ARG TORCH_ARCH=
|
6 |
+
|
7 |
+
ENV AM_I_DOCKER True
|
8 |
+
ENV BUILD_WITH_CUDA "${USE_CUDA}"
|
9 |
+
ENV TORCH_CUDA_ARCH_LIST "${TORCH_ARCH}"
|
10 |
+
ENV CUDA_HOME /usr/local/cuda-11.6/
|
11 |
+
|
12 |
+
RUN apt-get update && apt-get install --no-install-recommends wget ffmpeg=7:* \
|
13 |
+
libsm6=2:* libxext6=2:* git=1:* nano=2.* \
|
14 |
+
vim=2:* -y \
|
15 |
+
&& apt-get clean && apt-get autoremove && rm -rf /var/lib/apt/lists/*
|
16 |
+
|
17 |
+
WORKDIR /app
|
18 |
+
COPY . /app
|
19 |
+
|
20 |
+
RUN pip install -r requirements.txt
|
21 |
+
|
22 |
+
# Expose the desired port (change it if needed)
|
23 |
+
EXPOSE 7680
|
24 |
+
CMD ["python3", "app.py"]
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 Binh Le
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
__init__.py
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import gradio as gr
|
4 |
+
from utils import get_upsampler, get_face_enhancer
|
5 |
+
|
6 |
+
|
7 |
+
def inference(img, task, model_name, scale):
|
8 |
+
if scale > 4:
|
9 |
+
scale = 4 # avoid too large scale value
|
10 |
+
try:
|
11 |
+
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
|
12 |
+
|
13 |
+
h, w = img.shape[0:2]
|
14 |
+
if h > 3500 or w > 3500:
|
15 |
+
raise gr.Error(f"image too large: {w} * {h}")
|
16 |
+
|
17 |
+
if (h < 300 and w < 300) and model_name != "srcnn":
|
18 |
+
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
19 |
+
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
20 |
+
|
21 |
+
if task == "face":
|
22 |
+
upsample_model_name = "realesr-general-x4v3"
|
23 |
+
else:
|
24 |
+
upsample_model_name = model_name
|
25 |
+
upsampler = get_upsampler(upsample_model_name)
|
26 |
+
|
27 |
+
if task == "face":
|
28 |
+
face_enhancer = get_face_enhancer(model_name, scale, upsampler)
|
29 |
+
else:
|
30 |
+
face_enhancer = None
|
31 |
+
|
32 |
+
try:
|
33 |
+
if face_enhancer is not None:
|
34 |
+
_, _, output = face_enhancer.enhance(
|
35 |
+
img, has_aligned=False, only_center_face=False, paste_back=True
|
36 |
+
)
|
37 |
+
else:
|
38 |
+
output, _ = upsampler.enhance(img, outscale=scale)
|
39 |
+
except RuntimeError as error:
|
40 |
+
raise gr.Error(error)
|
41 |
+
|
42 |
+
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
43 |
+
return output
|
44 |
+
except Exception as error:
|
45 |
+
raise gr.Error(f"global exception: {error}")
|
46 |
+
|
47 |
+
|
48 |
+
def on_task_change(task):
|
49 |
+
if task == "general":
|
50 |
+
return gr.Dropdown.update(
|
51 |
+
choices=[
|
52 |
+
"srcnn",
|
53 |
+
"RealESRGAN_x2plus",
|
54 |
+
"RealESRGAN_x4plus",
|
55 |
+
"RealESRNet_x4plus",
|
56 |
+
"realesr-general-x4v3",
|
57 |
+
],
|
58 |
+
value="realesr-general-x4v3",
|
59 |
+
)
|
60 |
+
elif task == "face":
|
61 |
+
return gr.Dropdown.update(
|
62 |
+
choices=["GFPGANv1.3", "GFPGANv1.4", "RestoreFormer"], value="GFPGANv1.4"
|
63 |
+
)
|
64 |
+
elif task == "anime":
|
65 |
+
return gr.Dropdown.update(
|
66 |
+
choices=["srcnn", "RealESRGAN_x4plus_anime_6B", "realesr-animevideov3"],
|
67 |
+
value="RealESRGAN_x4plus_anime_6B",
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
title = "ISR: General Image Super Resolution"
|
72 |
+
description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br>
|
73 |
+
It can be used to restore your **old photos** or improve **AI-generated faces**.<br>
|
74 |
+
To use it, simply upload your image.<br>
|
75 |
+
If GFPGAN is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a> and recommend it to your friends 😊
|
76 |
+
"""
|
77 |
+
article = r"""
|
78 |
+
<center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>
|
79 |
+
"""
|
80 |
+
|
81 |
+
with gr.Blocks(css="style.css", title=title) as demo:
|
82 |
+
with gr.Row(elem_classes=["container"]):
|
83 |
+
with gr.Column(scale=2):
|
84 |
+
input_image = gr.Image(type="filepath", label="Input")
|
85 |
+
# with gr.Row():
|
86 |
+
task = gr.Dropdown(
|
87 |
+
["general", "face", "anime"],
|
88 |
+
type="value",
|
89 |
+
value="general",
|
90 |
+
label="task",
|
91 |
+
)
|
92 |
+
model_name = gr.Dropdown(
|
93 |
+
[
|
94 |
+
"srcnn",
|
95 |
+
"RealESRGAN_x2plus",
|
96 |
+
"RealESRGAN_x4plus",
|
97 |
+
"RealESRNet_x4plus",
|
98 |
+
"realesr-general-x4v3",
|
99 |
+
],
|
100 |
+
type="value",
|
101 |
+
value="realesr-general-x4v3",
|
102 |
+
label="model",
|
103 |
+
)
|
104 |
+
scale = gr.Slider(
|
105 |
+
minimum=1.5,
|
106 |
+
maximum=4,
|
107 |
+
value=2,
|
108 |
+
step=0.5,
|
109 |
+
label="Scale factor",
|
110 |
+
info="Scaling factor",
|
111 |
+
)
|
112 |
+
run_btn = gr.Button(value="Submit")
|
113 |
+
|
114 |
+
with gr.Column(scale=3):
|
115 |
+
output_image = gr.Image(type="numpy", label="Output image")
|
116 |
+
|
117 |
+
with gr.Row(elem_classes=["container"]):
|
118 |
+
gr.Examples(
|
119 |
+
[
|
120 |
+
["examples/landscape.jpg", "general", 2],
|
121 |
+
["examples/cat.jpg", "general", 2],
|
122 |
+
["examples/cat2.jpg", "face", 2],
|
123 |
+
["examples/AI-generate.png", "face", 2],
|
124 |
+
["examples/Blake_Lively.png", "face", 2],
|
125 |
+
["examples/old_image.jpg", "face", 2],
|
126 |
+
["examples/naruto.png", "anime", 2],
|
127 |
+
["examples/luffy2.jpg", "anime", 2],
|
128 |
+
],
|
129 |
+
[input_image, task, scale],
|
130 |
+
)
|
131 |
+
|
132 |
+
run_btn.click(inference, [input_image, task, model_name, scale], [output_image])
|
133 |
+
task.change(on_task_change, [task], [model_name])
|
134 |
+
|
135 |
+
demo.queue(concurrency_count=4).launch(debug=True, share=True)
|
config.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
|
4 |
+
WEIGHT_DIR = "weights"
|
5 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
examples/AI-generate.png
ADDED
![]() |
examples/Blake_Lively.png
ADDED
![]() |
examples/cat.jpg
ADDED
![]() |
examples/cat2.jpg
ADDED
![]() |
examples/landscape.jpg
ADDED
![]() |
examples/luffy.jpg
ADDED
![]() |
examples/luffy2.jpg
ADDED
![]() |
examples/naruto.png
ADDED
![]() |
examples/old_image.jpg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate
|
2 |
+
gradio
|
3 |
+
matplotlib
|
4 |
+
numpy
|
5 |
+
opencv_python
|
6 |
+
Pillow
|
7 |
+
requests
|
8 |
+
torch
|
9 |
+
torchvision
|
10 |
+
transformers
|
11 |
+
imutils
|
12 |
+
argparse
|
13 |
+
tqdm
|
14 |
+
basicsr
|
15 |
+
facexlib
|
16 |
+
gfpgan
|
17 |
+
realesrgan
|
18 |
+
lmdb
|
19 |
+
pyyaml
|
20 |
+
yapf
|
srcnn.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from torch import nn
|
6 |
+
from torchvision import transforms as T
|
7 |
+
|
8 |
+
|
9 |
+
class SRCNN(nn.Module):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
input_channels=3,
|
13 |
+
output_channels=3,
|
14 |
+
input_size=33,
|
15 |
+
label_size=21,
|
16 |
+
scale=2,
|
17 |
+
device=None,
|
18 |
+
):
|
19 |
+
super().__init__()
|
20 |
+
self.input_size = input_size
|
21 |
+
self.label_size = label_size
|
22 |
+
self.pad = (self.input_size - self.label_size) // 2
|
23 |
+
self.scale = scale
|
24 |
+
self.model = nn.Sequential(
|
25 |
+
nn.Conv2d(input_channels, 64, 9),
|
26 |
+
nn.ReLU(),
|
27 |
+
nn.Conv2d(64, 32, 1),
|
28 |
+
nn.ReLU(),
|
29 |
+
nn.Conv2d(32, output_channels, 5),
|
30 |
+
nn.ReLU(),
|
31 |
+
)
|
32 |
+
self.transform = T.Compose(
|
33 |
+
[T.ToTensor()] # Scale between [0, 1]
|
34 |
+
)
|
35 |
+
|
36 |
+
if device is None:
|
37 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
38 |
+
self.device = device
|
39 |
+
|
40 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
41 |
+
return self.model(x)
|
42 |
+
|
43 |
+
@torch.no_grad()
|
44 |
+
def pre_process(self, x: Union[np.ndarray, torch.Tensor]) -> torch.Tensor:
|
45 |
+
if torch.is_tensor(x):
|
46 |
+
return x / 255.0
|
47 |
+
else:
|
48 |
+
return self.transform(x)
|
49 |
+
|
50 |
+
@torch.no_grad()
|
51 |
+
def post_process(self, x: torch.Tensor) -> torch.Tensor:
|
52 |
+
return x.clip(0, 1) * 255.0
|
53 |
+
|
54 |
+
@torch.no_grad()
|
55 |
+
def enhance(self, image: np.ndarray, outscale: float = 2) -> np.ndarray:
|
56 |
+
(h, w) = image.shape[:2]
|
57 |
+
scale_w = int((w - w % self.label_size + self.input_size) * self.scale)
|
58 |
+
scale_h = int((h - h % self.label_size + self.input_size) * self.scale)
|
59 |
+
# resize the input image using bicubic interpolation
|
60 |
+
scaled = cv2.resize(image, (scale_w, scale_h), interpolation=cv2.INTER_CUBIC)
|
61 |
+
# Preprocessing
|
62 |
+
in_tensor = self.pre_process(scaled) # (C, H, W)
|
63 |
+
out_tensor = torch.zeros_like(in_tensor) # (C, H, W)
|
64 |
+
|
65 |
+
# slide a window from left-to-right and top-to-bottom
|
66 |
+
for y in range(0, scale_h - self.input_size + 1, self.label_size):
|
67 |
+
for x in range(0, scale_w - self.input_size + 1, self.label_size):
|
68 |
+
# crop ROI from our scaled image
|
69 |
+
crop = in_tensor[:, y : y + self.input_size, x : x + self.input_size]
|
70 |
+
# make a prediction on the crop and store it in our output
|
71 |
+
crop_inp = crop.unsqueeze(0).to(self.device)
|
72 |
+
pred = self.forward(crop_inp).cpu().squeeze()
|
73 |
+
out_tensor[
|
74 |
+
:,
|
75 |
+
y + self.pad : y + self.pad + self.label_size,
|
76 |
+
x + self.pad : x + self.pad + self.label_size,
|
77 |
+
] = pred
|
78 |
+
|
79 |
+
out_tensor = self.post_process(out_tensor)
|
80 |
+
output = out_tensor.permute(1, 2, 0).numpy() # (C, H, W) to (H, W, C)
|
81 |
+
output = output[self.pad : -self.pad * 2, self.pad : -self.pad * 2]
|
82 |
+
output = np.clip(output, 0, 255).astype("uint8")
|
83 |
+
|
84 |
+
# Use openCV to upsample image if scaling factor different than 2
|
85 |
+
if outscale != 2:
|
86 |
+
interpolation = cv2.INTER_AREA if outscale < 2 else cv2.INTER_LANCZOS4
|
87 |
+
h, w = output.shape[0:2]
|
88 |
+
output = cv2.resize(
|
89 |
+
output,
|
90 |
+
(int(w * outscale / 2), int(h * outscale / 2)),
|
91 |
+
interpolation=interpolation,
|
92 |
+
)
|
93 |
+
|
94 |
+
return output, None
|
style.css
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.container {
|
2 |
+
max-width: 1368px;
|
3 |
+
margin-left: auto;
|
4 |
+
margin-right: auto;
|
5 |
+
}
|
6 |
+
|
7 |
+
#row-flex {
|
8 |
+
display: flex;
|
9 |
+
align-items: center;
|
10 |
+
justify-content: center;
|
11 |
+
}
|
upsample.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import cv2
|
3 |
+
import os
|
4 |
+
|
5 |
+
from imutils import paths
|
6 |
+
from tqdm import tqdm
|
7 |
+
from config import *
|
8 |
+
from utils import get_face_enhancer, get_upsampler
|
9 |
+
|
10 |
+
|
11 |
+
def process(image_path, upsampler_name, face_enhancer_name=None, scale=2, device="cpu"):
|
12 |
+
if scale > 4:
|
13 |
+
scale = 4 # avoid too large scale value
|
14 |
+
try:
|
15 |
+
img = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
|
16 |
+
|
17 |
+
h, w = img.shape[0:2]
|
18 |
+
if h > 3500 or w > 3500:
|
19 |
+
output = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
20 |
+
return output
|
21 |
+
|
22 |
+
if (h < 300 and w < 300) and upsampler_name != "srcnn":
|
23 |
+
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
24 |
+
return img
|
25 |
+
|
26 |
+
upsampler = get_upsampler(upsampler_name, device=device)
|
27 |
+
|
28 |
+
if face_enhancer_name:
|
29 |
+
face_enhancer = get_face_enhancer(
|
30 |
+
face_enhancer_name, scale, upsampler, device=device
|
31 |
+
)
|
32 |
+
else:
|
33 |
+
face_enhancer = None
|
34 |
+
|
35 |
+
try:
|
36 |
+
if face_enhancer is not None:
|
37 |
+
_, _, output = face_enhancer.enhance(
|
38 |
+
img, has_aligned=False, only_center_face=False, paste_back=True
|
39 |
+
)
|
40 |
+
else:
|
41 |
+
output, _ = upsampler.enhance(img, outscale=scale)
|
42 |
+
except RuntimeError as error:
|
43 |
+
print(f"Runtime error: {error}")
|
44 |
+
|
45 |
+
return output
|
46 |
+
except Exception as error:
|
47 |
+
print(f"global exception: {error}")
|
48 |
+
|
49 |
+
|
50 |
+
def main(args: argparse.Namespace) -> None:
|
51 |
+
device = args.device
|
52 |
+
scale = args.scale
|
53 |
+
|
54 |
+
upsampler_name = args.upsampler
|
55 |
+
face_enhancer_name = args.face_enhancer
|
56 |
+
|
57 |
+
if face_enhancer_name and ("srcnn" in upsampler_name or "anime" in upsampler_name):
|
58 |
+
print(
|
59 |
+
"Warnings: SRCNN and Anime model aren't compatible with face enhance. We will turn it off for you"
|
60 |
+
)
|
61 |
+
face_enhancer_name = None
|
62 |
+
|
63 |
+
os.makedirs(args.output, exist_ok=True)
|
64 |
+
if not os.path.exists(args.input):
|
65 |
+
raise ValueError("The input directory doesn't exist!")
|
66 |
+
elif not os.path.isdir(args.input):
|
67 |
+
image_paths = [args.input]
|
68 |
+
else:
|
69 |
+
image_paths = paths.list_images(args.input)
|
70 |
+
|
71 |
+
with tqdm(image_paths) as pbar:
|
72 |
+
for image_path in pbar:
|
73 |
+
filename = os.path.basename(image_path)
|
74 |
+
pbar.set_postfix_str(f"Processing {image_path}")
|
75 |
+
upsampled_image = process(
|
76 |
+
image_path=image_path,
|
77 |
+
upsampler_name=upsampler_name,
|
78 |
+
face_enhancer_name=face_enhancer_name,
|
79 |
+
scale=scale,
|
80 |
+
device=device,
|
81 |
+
)
|
82 |
+
if upsampled_image is not None:
|
83 |
+
save_path = os.path.join(args.output, filename)
|
84 |
+
cv2.imwrite(save_path, upsampled_image)
|
85 |
+
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
parser = argparse.ArgumentParser(
|
89 |
+
description=(
|
90 |
+
"Runs automatic detection and mask generation on an input image or directory of images"
|
91 |
+
)
|
92 |
+
)
|
93 |
+
|
94 |
+
parser.add_argument(
|
95 |
+
"--input",
|
96 |
+
"-i",
|
97 |
+
type=str,
|
98 |
+
required=True,
|
99 |
+
help="Path to either a single input image or folder of images.",
|
100 |
+
)
|
101 |
+
|
102 |
+
parser.add_argument(
|
103 |
+
"--output",
|
104 |
+
"-o",
|
105 |
+
type=str,
|
106 |
+
required=True,
|
107 |
+
help="Path to the output directory.",
|
108 |
+
)
|
109 |
+
|
110 |
+
parser.add_argument(
|
111 |
+
"--upsampler",
|
112 |
+
type=str,
|
113 |
+
default="realesr-general-x4v3",
|
114 |
+
choices=[
|
115 |
+
"srcnn",
|
116 |
+
"RealESRGAN_x2plus",
|
117 |
+
"RealESRGAN_x4plus",
|
118 |
+
"RealESRNet_x4plus",
|
119 |
+
"realesr-general-x4v3",
|
120 |
+
"RealESRGAN_x4plus_anime_6B",
|
121 |
+
"realesr-animevideov3",
|
122 |
+
],
|
123 |
+
help="The type of upsampler model to load",
|
124 |
+
)
|
125 |
+
|
126 |
+
parser.add_argument(
|
127 |
+
"--face-enhancer",
|
128 |
+
type=str,
|
129 |
+
choices=["GFPGANv1.3", "GFPGANv1.4", "RestoreFormer"],
|
130 |
+
help="The type of face enhancer model to load",
|
131 |
+
)
|
132 |
+
|
133 |
+
parser.add_argument(
|
134 |
+
"--scale",
|
135 |
+
type=float,
|
136 |
+
default=2,
|
137 |
+
choices=[1.5, 2, 2.5, 3, 3.5, 4],
|
138 |
+
help="scaling factor",
|
139 |
+
)
|
140 |
+
parser.add_argument(
|
141 |
+
"--device", type=str, default="cuda", help="The device to run upsampling on."
|
142 |
+
)
|
143 |
+
args = parser.parse_args()
|
144 |
+
main(args)
|
utils.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from basicsr.utils.download_util import load_file_from_url
|
4 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
5 |
+
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
6 |
+
from gfpgan.utils import GFPGANer
|
7 |
+
from realesrgan.utils import RealESRGANer
|
8 |
+
|
9 |
+
from config import *
|
10 |
+
from srcnn import SRCNN
|
11 |
+
|
12 |
+
|
13 |
+
def get_upsampler(model_name, device=None):
|
14 |
+
if model_name == "RealESRGAN_x4plus": # x4 RRDBNet model
|
15 |
+
model = RRDBNet(
|
16 |
+
num_in_ch=3,
|
17 |
+
num_out_ch=3,
|
18 |
+
num_feat=64,
|
19 |
+
num_block=23,
|
20 |
+
num_grow_ch=32,
|
21 |
+
scale=4,
|
22 |
+
)
|
23 |
+
netscale = 4
|
24 |
+
file_url = [
|
25 |
+
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth"
|
26 |
+
]
|
27 |
+
elif model_name == "RealESRNet_x4plus": # x4 RRDBNet model
|
28 |
+
model = RRDBNet(
|
29 |
+
num_in_ch=3,
|
30 |
+
num_out_ch=3,
|
31 |
+
num_feat=64,
|
32 |
+
num_block=23,
|
33 |
+
num_grow_ch=32,
|
34 |
+
scale=4,
|
35 |
+
)
|
36 |
+
netscale = 4
|
37 |
+
file_url = [
|
38 |
+
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth"
|
39 |
+
]
|
40 |
+
elif model_name == "RealESRGAN_x4plus_anime_6B": # x4 RRDBNet model with 6 blocks
|
41 |
+
model = RRDBNet(
|
42 |
+
num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4
|
43 |
+
)
|
44 |
+
netscale = 4
|
45 |
+
file_url = [
|
46 |
+
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth"
|
47 |
+
]
|
48 |
+
elif model_name == "RealESRGAN_x2plus": # x2 RRDBNet model
|
49 |
+
model = RRDBNet(
|
50 |
+
num_in_ch=3,
|
51 |
+
num_out_ch=3,
|
52 |
+
num_feat=64,
|
53 |
+
num_block=23,
|
54 |
+
num_grow_ch=32,
|
55 |
+
scale=2,
|
56 |
+
)
|
57 |
+
netscale = 2
|
58 |
+
file_url = [
|
59 |
+
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth"
|
60 |
+
]
|
61 |
+
elif model_name == "realesr-animevideov3": # x4 VGG-style model (XS size)
|
62 |
+
model = SRVGGNetCompact(
|
63 |
+
num_in_ch=3,
|
64 |
+
num_out_ch=3,
|
65 |
+
num_feat=64,
|
66 |
+
num_conv=16,
|
67 |
+
upscale=4,
|
68 |
+
act_type="prelu",
|
69 |
+
)
|
70 |
+
netscale = 4
|
71 |
+
file_url = [
|
72 |
+
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth"
|
73 |
+
]
|
74 |
+
elif model_name == "realesr-general-x4v3": # x4 VGG-style model (S size)
|
75 |
+
model = SRVGGNetCompact(
|
76 |
+
num_in_ch=3,
|
77 |
+
num_out_ch=3,
|
78 |
+
num_feat=64,
|
79 |
+
num_conv=32,
|
80 |
+
upscale=4,
|
81 |
+
act_type="prelu",
|
82 |
+
)
|
83 |
+
netscale = 4
|
84 |
+
file_url = [
|
85 |
+
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
|
86 |
+
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
|
87 |
+
]
|
88 |
+
elif model_name == "srcnn":
|
89 |
+
model = SRCNN(device=device)
|
90 |
+
model_path = os.path.join(ROOT_DIR, WEIGHT_DIR, model_name + ".pth")
|
91 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
|
92 |
+
if device:
|
93 |
+
model.to(device)
|
94 |
+
return model
|
95 |
+
else:
|
96 |
+
raise ValueError(f"Wrong model version {model_name}.")
|
97 |
+
|
98 |
+
model_path = os.path.join(ROOT_DIR, WEIGHT_DIR, model_name + ".pth")
|
99 |
+
if not os.path.exists(model_path):
|
100 |
+
print(f"Downloading weights for model {model_name}")
|
101 |
+
|
102 |
+
for url in file_url:
|
103 |
+
# model_path will be updated
|
104 |
+
model_path = load_file_from_url(
|
105 |
+
url=url,
|
106 |
+
model_dir=os.path.join(ROOT_DIR, WEIGHT_DIR),
|
107 |
+
progress=True,
|
108 |
+
file_name=None,
|
109 |
+
)
|
110 |
+
|
111 |
+
if model_name != "realesr-general-x4v3":
|
112 |
+
dni_weight = None
|
113 |
+
else:
|
114 |
+
dni_weight = [0.5, 0.5]
|
115 |
+
wdn_model_path = model_path.replace(
|
116 |
+
"realesr-general-x4v3", "realesr-general-wdn-x4v3"
|
117 |
+
)
|
118 |
+
model_path = [model_path, wdn_model_path]
|
119 |
+
|
120 |
+
half = "cuda" in str(device)
|
121 |
+
|
122 |
+
return RealESRGANer(
|
123 |
+
scale=netscale,
|
124 |
+
model_path=model_path,
|
125 |
+
dni_weight=dni_weight,
|
126 |
+
model=model,
|
127 |
+
half=half,
|
128 |
+
device=device,
|
129 |
+
)
|
130 |
+
|
131 |
+
|
132 |
+
def get_face_enhancer(model_name, upscale=2, bg_upsampler=None, device=None):
|
133 |
+
if model_name == "GFPGANv1.3":
|
134 |
+
arch = "clean"
|
135 |
+
channel_multiplier = 2
|
136 |
+
file_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth"
|
137 |
+
elif model_name == "GFPGANv1.4":
|
138 |
+
arch = "clean"
|
139 |
+
channel_multiplier = 2
|
140 |
+
file_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth"
|
141 |
+
elif model_name == "RestoreFormer":
|
142 |
+
arch = "RestoreFormer"
|
143 |
+
channel_multiplier = 2
|
144 |
+
file_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth"
|
145 |
+
else:
|
146 |
+
raise ValueError(f"Wrong model version {model_name}.")
|
147 |
+
|
148 |
+
model_path = os.path.join(ROOT_DIR, WEIGHT_DIR, model_name + ".pth")
|
149 |
+
if not os.path.exists(model_path):
|
150 |
+
print(f"Downloading weights for model {model_name}")
|
151 |
+
model_path = load_file_from_url(
|
152 |
+
url=file_url,
|
153 |
+
model_dir=os.path.join(ROOT_DIR, WEIGHT_DIR),
|
154 |
+
progress=True,
|
155 |
+
file_name=None,
|
156 |
+
)
|
157 |
+
|
158 |
+
return GFPGANer(
|
159 |
+
model_path=model_path,
|
160 |
+
upscale=upscale,
|
161 |
+
arch=arch,
|
162 |
+
channel_multiplier=channel_multiplier,
|
163 |
+
bg_upsampler=bg_upsampler,
|
164 |
+
device=device,
|
165 |
+
)
|
weights/srcnn.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df34daf51c338db25f197d8abcd003c0b3f109c1e8b4ca33d111862b30437bf3
|
3 |
+
size 82119
|