Spaces:
Sleeping
Sleeping
File size: 6,973 Bytes
67d4d3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import numpy as np
import os
from nanosam import Predictor
import gradio as gr
import time
from PIL import ImageDraw
from utils import download_file_from_url, fast_process, format_results, point_prompt
# Most of our demo code is from [FastSAM Demo](https://huggingface.co/spaces/An-619/FastSAM). Huge thanks for AN-619.
if not os.path.exists("onnx/sam_hgv2_b4_ln_nonorm_image_encoder.onnx"):
download_file_from_url(
"https://huggingface.co/dragonSwing/nanosam/resolve/main/sam_hgv2_b4_ln_nonorm_image_encoder.onnx",
"onnx/sam_hgv2_b4_ln_nonorm_image_encoder.onnx",
)
if not os.path.exists("onnx/efficientvit_l0_mask_decoder.onnx"):
download_file_from_url(
"https://huggingface.co/dragonSwing/nanosam/resolve/main/efficientvit_l0_mask_decoder.onnx",
"onnx/efficientvit_l0_mask_decoder.onnx",
)
# Load the pre-trained model
image_encoder_cfg = {
"path": "onnx/sam_hgv2_b4_ln_nonorm_image_encoder.onnx",
"provider": "cpu",
"normalize_input": False,
}
mask_decoder_cfg = {
"path": "onnx/efficientvit_l0_mask_decoder.onnx",
"provider": "cpu",
}
predictor = Predictor(image_encoder_cfg, mask_decoder_cfg)
# Description
title = "<center><strong><font size='8'>Faster Segment Anything(NanoSAM)<font></strong></center>"
description_p = """ ## This is a demo of [Faster Segment Anything(NanoSAM) Model](https://github.com/binh234/nanosam).
# Instructions for point mode
0. Restart by click the Restart button
1. Select a point with Add Mask for the foreground (Must)
2. Select a point with Remove Area for the background (Optional)
3. Click the Start Segmenting.
- Github [link](https://github.com/binh234/nanosam)
- Model Card [link](https://huggingface.co/dragoswing/nanosam)
We will provide box mode soon.
Enjoy!
"""
examples = [
["assets/picture3.jpg"],
["assets/picture4.jpg"],
["assets/picture5.jpg"],
["assets/picture6.jpg"],
["assets/picture1.jpg"],
["assets/picture2.jpg"],
["assets/dogs.jpg"],
]
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
def get_empty_state():
return {"points": [], "point_labels": [], "features": None}
def clear():
return None, None, get_empty_state()
def set_image(image):
state = get_empty_state()
start = time.perf_counter()
predictor.set_image(image)
end = time.perf_counter()
print(f"Encoder time: {end - start: .3f}s")
state["features"] = predictor.features
return state
def segment_with_points(
image,
state,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=True,
):
global predictor
points = np.asarray(state["points"])
point_labels = np.asarray(state["point_labels"])
if len(points) == 0 and len(point_labels) == 0:
raise gr.Error("No points selected")
if len(points) != len(point_labels):
raise gr.Error("Mismatch length between points and point labels")
if state["features"] is None:
raise gr.Error(
"Image was not set correctly, please wait for a moment after uploading image before drawing points!"
)
predictor.features = state["features"]
img_w, img_h = image.size
predictor.original_size = (img_h, img_w)
start = time.perf_counter()
masks, scores, logits = predictor.predict(
points=points,
point_labels=point_labels,
)
end = time.perf_counter()
print(f"Decoder time: {end - start: .3f}s")
# results = format_results(masks[0], scores[0], logits[0], 0)
# annotations, _ = point_prompt(results, points, point_labels, img_h, img_w)
# annotations = np.array([annotations])
fig = fast_process(
annotations=[masks[0, scores.argmax()] > 0],
image=image,
scale=1,
better_quality=better_quality,
mask_random_color=mask_random_color,
bbox=None,
use_retina=use_retina,
withContours=withContours,
)
# return fig, None
return fig
def get_points_with_draw(image, label, evt: gr.SelectData, state):
x, y = evt.index[0], evt.index[1]
point_radius, point_color = 15, (
(255, 255, 0)
if label == "Add Mask"
else (
255,
0,
255,
)
)
state["points"].append([x, y])
state["point_labels"].append(1 if label == "Add Mask" else 0)
print(x, y, label == "Add Mask")
draw = ImageDraw.Draw(image)
draw.ellipse(
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
fill=point_color,
)
return image, state
cond_img_p = gr.Image(label="Input with points", type="pil", interactive=True)
segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type="pil")
global_points = []
global_point_labels = []
with gr.Blocks(css=css, title="Faster Segment Anything(NanoSAM)") as demo:
state = gr.State(value=get_empty_state())
with gr.Row():
with gr.Column(scale=1):
# Title
gr.Markdown(title)
with gr.Tab("Point mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_p.render()
with gr.Column(scale=1):
segm_img_p.render()
# Submit & Clear
with gr.Row():
with gr.Column():
with gr.Row():
add_or_remove = gr.Radio(
["Add Mask", "Remove Area"],
value="Add Mask",
)
with gr.Column():
segment_btn_p = gr.Button("Start segmenting!", variant="primary")
restart_btn_p = gr.Button("Restart", variant="secondary")
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[cond_img_p],
outputs=[state],
fn=set_image,
run_on_click=True,
examples_per_page=4,
)
with gr.Column():
# Description
gr.Markdown(description_p)
cond_img_p.upload(set_image, inputs=[cond_img_p], outputs=[state])
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove, state], [cond_img_p, state])
segment_btn_p.click(segment_with_points, [cond_img_p, state], [segm_img_p])
restart_btn_p.click(clear, outputs=[cond_img_p, segm_img_p, state])
demo.queue().launch()
|