Spaces:
Runtime error
Runtime error
File size: 7,853 Bytes
e086001 54696a3 e086001 54696a3 e086001 54696a3 e086001 f2420a8 e086001 e0cedf5 e086001 e0cedf5 e086001 f2420a8 e086001 be51cd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import gradio as gr
import os
import validators
from imutils import paths
from config import *
from download_video import download_video
from bg_modeling import capture_slides_bg_modeling
from frame_differencing import capture_slides_frame_diff
from post_process import remove_duplicates
from utils import create_output_directory, convert_slides_to_pdf
def process(
video_path,
bg_type,
frame_buffer_history,
hash_size,
hash_func,
hash_queue_len,
sim_threshold,
):
output_dir_path = "output_results"
output_dir_path = create_output_directory(video_path, output_dir_path, bg_type)
if bg_type.lower() == "Frame Diff":
capture_slides_frame_diff(video_path, output_dir_path)
else:
if bg_type.lower() == "gmg":
thresh = DEC_THRESH
elif bg_type.lower() == "knn":
thresh = DIST_THRESH
capture_slides_bg_modeling(
video_path,
output_dir_path,
type_bgsub=bg_type,
history=frame_buffer_history,
threshold=thresh,
MIN_PERCENT_THRESH=MIN_PERCENT,
MAX_PERCENT_THRESH=MAX_PERCENT,
)
# Perform post-processing using difference hashing technique to remove duplicate slides.
hash_func = HASH_FUNC_DICT.get(hash_func.lower())
diff_threshold = int(hash_size * hash_size * (100 - sim_threshold) / 100)
remove_duplicates(
output_dir_path, hash_size, hash_func, hash_queue_len, diff_threshold
)
pdf_path = convert_slides_to_pdf(output_dir_path)
# Remove unneccessary files
os.remove(video_path)
for image_path in paths.list_images(output_dir_path):
os.remove(image_path)
return pdf_path
def process_file(
file_obj,
bg_type,
frame_buffer_history,
hash_size,
hash_func,
hash_queue_len,
sim_threshold,
):
return process(
file_obj.name,
bg_type,
frame_buffer_history,
hash_size,
hash_func,
hash_queue_len,
sim_threshold,
)
def process_via_url(
url,
bg_type,
frame_buffer_history,
hash_size,
hash_func,
hash_queue_len,
sim_threshold,
):
if validators.url(url):
video_path = download_video(url)
if video_path is None:
raise gr.Error(
"An error occurred while downloading the video, please try again later"
)
return process(
video_path,
bg_type,
frame_buffer_history,
hash_size,
hash_func,
hash_queue_len,
sim_threshold,
)
else:
raise gr.Error("Please enter a valid video URL")
with gr.Blocks(css="style.css") as demo:
with gr.Row(elem_classes=["container"]):
gr.Markdown(
"""
# Video 2 Slides Converter
Convert your video presentation into PDF slides with one click.
You can browse your video from the local file system, or enter a video URL/YouTube video link to start processing.
**Note**:
- It will take some time to complete (~ half of the original video length), so stay tuned!
- If the YouTube video link doesn't work, you can try again later or download video to your computer and then upload it to the app
- Remember to press Enter if you are using an external URL
""",
elem_id="container",
)
with gr.Row(elem_classes=["container"]):
with gr.Column(scale=1):
with gr.Accordion("Advanced parameters"):
bg_type = gr.Dropdown(
["Frame Diff", "GMG", "KNN"],
value="GMG",
label="Background subtraction",
info="Type of background subtraction to be used",
)
frame_buffer_history = gr.Slider(
minimum=5,
maximum=20,
value=FRAME_BUFFER_HISTORY,
step=5,
label="Frame buffer history",
info="Length of the frame buffer history to model background.",
)
# Post process
hash_func = gr.Dropdown(
["Difference hashing", "Perceptual hashing", "Average hashing"],
value="Difference hashing",
label="Background subtraction",
info="Hash function to use for image hashing",
)
hash_size = gr.Slider(
minimum=8,
maximum=16,
value=HASH_SIZE,
step=2,
label="Hash size",
info="Hash size to use for image hashing",
)
hash_queue_len = gr.Slider(
minimum=5,
maximum=15,
value=HASH_BUFFER_HISTORY,
step=5,
label="Hash queue len",
info="Number of history images used to find out duplicate image",
)
sim_threshold = gr.Slider(
minimum=90,
maximum=100,
value=SIM_THRESHOLD,
step=1,
label="Similarity threshold",
info="Minimum similarity threshold (in percent) to consider 2 images to be similar",
)
with gr.Column(scale=2):
with gr.Row(elem_id="row-flex"):
with gr.Column(scale=3):
file_url = gr.Textbox(
value="",
label="Upload your file",
placeholder="Enter a video url or YouTube video link",
show_label=False,
)
with gr.Column(scale=1, min_width=160):
upload_button = gr.UploadButton("Browse File", file_types=["video"])
file_output = gr.File(file_types=[".pdf"], label="Output PDF")
gr.Examples(
[
[
"https://www.youtube.com/watch?v=bfmFfD2RIcg",
"output_results/Neural Network In 5 Minutes.pdf",
],
[
"https://www.youtube.com/watch?v=EEo10bgsh0k",
"output_results/react-in-5-minutes.pdf",
],
],
[file_url, file_output],
)
with gr.Row(elem_classes=["container"]):
gr.HTML(
"""<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co/spaces/dragonSwing/video2slide?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br>
<p><img src="https://visitor-badge.glitch.me/badge?page_id=dragonswing.video2slide" alt="visitors"></p></center>"""
)
file_url.submit(
process_via_url,
[
file_url,
bg_type,
frame_buffer_history,
hash_size,
hash_func,
hash_queue_len,
sim_threshold,
],
file_output,
)
upload_button.upload(
process_file,
[
upload_button,
bg_type,
frame_buffer_history,
hash_size,
hash_func,
hash_queue_len,
sim_threshold,
],
file_output,
)
demo.queue(concurrency_count=4).launch()
|