Spaces:
Runtime error
Runtime error
Commit
·
90420f4
1
Parent(s):
7bfa718
Update app.py
Browse files
app.py
CHANGED
@@ -6,16 +6,18 @@ from speechbrain.pretrained import EncoderASR
|
|
6 |
from transformers.file_utils import cached_path, hf_bucket_url
|
7 |
|
8 |
cache_dir = './cache/'
|
9 |
-
lm_file = hf_bucket_url(
|
|
|
10 |
lm_file = cached_path(lm_file, cache_dir=cache_dir)
|
11 |
with zipfile.ZipFile(lm_file, 'r') as zip_ref:
|
12 |
zip_ref.extractall(cache_dir)
|
13 |
lm_file = cache_dir + 'lm.binary'
|
14 |
vocab_file = cache_dir + 'vocab-260000.txt'
|
15 |
-
model = EncoderASR.from_hparams(source="dragonSwing/wav2vec2-base-vn-270h",
|
16 |
savedir="/content/pretrained2/"
|
17 |
)
|
18 |
|
|
|
19 |
def get_decoder_ngram_model(tokenizer, ngram_lm_path, vocab_path=None):
|
20 |
unigrams = None
|
21 |
if vocab_path is not None:
|
@@ -37,19 +39,23 @@ def get_decoder_ngram_model(tokenizer, ngram_lm_path, vocab_path=None):
|
|
37 |
decoder = build_ctcdecoder(vocab_list, ngram_lm_path, unigrams=unigrams)
|
38 |
return decoder
|
39 |
|
|
|
40 |
ngram_lm_model = get_decoder_ngram_model(model.tokenizer, lm_file, vocab_file)
|
41 |
|
|
|
42 |
def transcribe_file(path, max_seconds=20):
|
43 |
waveform = model.load_audio(path)
|
44 |
if max_seconds > 0:
|
45 |
-
|
46 |
batch = waveform.unsqueeze(0)
|
47 |
rel_length = torch.tensor([1.0])
|
48 |
with torch.no_grad():
|
49 |
logits = model(batch, rel_length)
|
50 |
-
text_batch = [ngram_lm_model.decode(
|
|
|
51 |
return text_batch[0]
|
52 |
|
|
|
53 |
def speech_recognize(file_upload, file_mic):
|
54 |
if file_upload is not None:
|
55 |
file = file_upload
|
@@ -61,10 +67,18 @@ def speech_recognize(file_upload, file_mic):
|
|
61 |
text = transcribe_file(file)
|
62 |
return text
|
63 |
|
64 |
-
|
65 |
-
|
|
|
|
|
66 |
title = "wav2vec2-base-vietnamese-270h"
|
67 |
description = "Gradio demo for a wav2vec2 base vietnamese speech recognition. To use it, simply upload your audio, click one of the examples to load them, or record from your own microphone. Read more at the links below. Currently supports 16_000hz audio files"
|
68 |
article = "<p style='text-align: center'><a href='https://huggingface.co/dragonSwing/wav2vec2-base-vn-270h' target='_blank'>Pretrained model</a></p>"
|
69 |
-
examples=
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from transformers.file_utils import cached_path, hf_bucket_url
|
7 |
|
8 |
cache_dir = './cache/'
|
9 |
+
lm_file = hf_bucket_url(
|
10 |
+
"dragonSwing/wav2vec2-base-vn-270h", filename='4gram.zip')
|
11 |
lm_file = cached_path(lm_file, cache_dir=cache_dir)
|
12 |
with zipfile.ZipFile(lm_file, 'r') as zip_ref:
|
13 |
zip_ref.extractall(cache_dir)
|
14 |
lm_file = cache_dir + 'lm.binary'
|
15 |
vocab_file = cache_dir + 'vocab-260000.txt'
|
16 |
+
model = EncoderASR.from_hparams(source="dragonSwing/wav2vec2-base-vn-270h",
|
17 |
savedir="/content/pretrained2/"
|
18 |
)
|
19 |
|
20 |
+
|
21 |
def get_decoder_ngram_model(tokenizer, ngram_lm_path, vocab_path=None):
|
22 |
unigrams = None
|
23 |
if vocab_path is not None:
|
|
|
39 |
decoder = build_ctcdecoder(vocab_list, ngram_lm_path, unigrams=unigrams)
|
40 |
return decoder
|
41 |
|
42 |
+
|
43 |
ngram_lm_model = get_decoder_ngram_model(model.tokenizer, lm_file, vocab_file)
|
44 |
|
45 |
+
|
46 |
def transcribe_file(path, max_seconds=20):
|
47 |
waveform = model.load_audio(path)
|
48 |
if max_seconds > 0:
|
49 |
+
waveform = waveform[:max_seconds*16000]
|
50 |
batch = waveform.unsqueeze(0)
|
51 |
rel_length = torch.tensor([1.0])
|
52 |
with torch.no_grad():
|
53 |
logits = model(batch, rel_length)
|
54 |
+
text_batch = [ngram_lm_model.decode(
|
55 |
+
logit.detach().cpu().numpy(), beam_width=500) for logit in logits]
|
56 |
return text_batch[0]
|
57 |
|
58 |
+
|
59 |
def speech_recognize(file_upload, file_mic):
|
60 |
if file_upload is not None:
|
61 |
file = file_upload
|
|
|
67 |
text = transcribe_file(file)
|
68 |
return text
|
69 |
|
70 |
+
|
71 |
+
inputs = [gr.inputs.Audio(source="upload", type='filepath', optional=True), gr.inputs.Audio(
|
72 |
+
source="microphone", type='filepath', optional=True)]
|
73 |
+
outputs = gr.outputs.Textbox(label="Output Text")
|
74 |
title = "wav2vec2-base-vietnamese-270h"
|
75 |
description = "Gradio demo for a wav2vec2 base vietnamese speech recognition. To use it, simply upload your audio, click one of the examples to load them, or record from your own microphone. Read more at the links below. Currently supports 16_000hz audio files"
|
76 |
article = "<p style='text-align: center'><a href='https://huggingface.co/dragonSwing/wav2vec2-base-vn-270h' target='_blank'>Pretrained model</a></p>"
|
77 |
+
examples = [
|
78 |
+
['example1.wav', 'example1.wav'],
|
79 |
+
['example2.mp3', 'example2.mp3'],
|
80 |
+
['example3.mp3', 'example3.mp3'],
|
81 |
+
['example4.wav', 'example4.wav'],
|
82 |
+
]
|
83 |
+
gr.Interface(speech_recognize, inputs, outputs, title=title,
|
84 |
+
description=description, article=article, examples=examples).launch()
|