Spaces:
Runtime error
Runtime error
File size: 5,134 Bytes
460fdc7 7786ff5 460fdc7 f7b4006 7786ff5 f7b4006 7786ff5 f7b4006 7786ff5 f7b4006 7786ff5 f7b4006 7786ff5 f7d481d 65c5de1 f7d481d 65c5de1 7786ff5 f7b4006 7786ff5 f7b4006 7786ff5 f7b4006 75534b8 f7b4006 7786ff5 f7b4006 7786ff5 f7b4006 75534b8 f7b4006 7786ff5 f7b4006 7786ff5 f7b4006 75534b8 f7b4006 7786ff5 f7b4006 7786ff5 f7b4006 7786ff5 f7b4006 7786ff5 f7b4006 7786ff5 f7b4006 75534b8 f7b4006 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
# %% auto 0
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
# %% app.ipynb 0
import gradio as gr
import pandas as pd
from huggingface_hub import list_models
# %% app.ipynb 1
def make_clickable_model(model_name, link=None):
if link is None:
link = "https://huggingface.co/" + model_name
# Remove user from model name
return f'<a target="_blank" href="{link}">{model_name.split("/")[-1]}</a>'
def make_clickable_user(user_id):
link = "https://huggingface.co/" + user_id
return f'<a target="_blank" href="{link}">{user_id}</a>'
# %% app.ipynb 2
def get_submissions(category):
submissions = list_models(filter=["dreambooth-hackathon", category], full=True)
leaderboard_models = []
for submission in submissions:
# user, model, likes
user_id = submission.id.split("/")[0]
leaderboard_models.append(
(
make_clickable_user(user_id),
make_clickable_model(submission.id),
submission.likes,
)
)
df = pd.DataFrame(data=leaderboard_models, columns=["User", "Model", "Likes"])
df.sort_values(by=["Likes"], ascending=False, inplace=True)
df.insert(0, "Rank", list(range(1, len(df) + 1)))
return df
# %% app.ipynb 3
block = gr.Blocks()
with block:
gr.Markdown(
"""# The DreamBooth Hackathon Leaderboard
Welcome to the leaderboard for the DreamBooth Hackathon! This is a community event where particpants **personalise a Stable Diffusion model** by fine-tuning it with a powerful technique called [_DreamBooth_](https://arxiv.org/abs/2208.12242). This technique allows one to implant a subject (e.g. your pet or favourite dish) into the output domain of the model such that it can be synthesized with a _unique identifier_ in the prompt.
This competition is composed of 5 _themes_, where each theme will collect models belong to one of the categories shown in the tabs below. We'll be **giving out prizes to the top 3 most liked models per theme**, and you're encouraged to submit as many models as you want!
For details on how to participate, check out the hackathon's guide [here](https://github.com/huggingface/diffusion-models-class/blob/main/hackathon/README.md).
"""
)
with gr.Tabs():
with gr.TabItem("Animal π¨"):
with gr.Row():
animal_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions, inputs=gr.Variable("animal"), outputs=animal_data
)
with gr.TabItem("Science π¬"):
with gr.Row():
science_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions, inputs=gr.Variable("science"), outputs=science_data
)
with gr.TabItem("Food π"):
with gr.Row():
food_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions, inputs=gr.Variable("food"), outputs=food_data
)
with gr.TabItem("Landscape π"):
with gr.Row():
landscape_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions,
inputs=gr.Variable("landscape"),
outputs=landscape_data,
)
with gr.TabItem("Wilcard π₯"):
with gr.Row():
wildcard_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions,
inputs=gr.Variable("wildcard"),
outputs=wildcard_data,
)
block.load(get_submissions, inputs=gr.Variable("animal"), outputs=animal_data)
block.load(get_submissions, inputs=gr.Variable("science"), outputs=science_data)
block.load(get_submissions, inputs=gr.Variable("food"), outputs=food_data)
block.load(get_submissions, inputs=gr.Variable("landscape"), outputs=landscape_data)
block.load(get_submissions, inputs=gr.Variable("wildcard"), outputs=wildcard_data)
block.launch()
|