File size: 7,954 Bytes
42966de
 
 
f43c5ad
6385f1b
98b32f1
 
 
 
 
 
 
 
 
 
a9471a7
 
 
5814747
 
 
 
 
 
 
 
 
 
 
 
 
a9471a7
5814747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98b32f1
42966de
a9471a7
 
 
42966de
 
98b32f1
42966de
f43c5ad
6385f1b
9813b68
 
f43c5ad
 
6385f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
614dae3
fb7e56c
6385f1b
8991bd4
 
 
 
 
 
4e85e92
5814747
 
8991bd4
 
e847c01
42966de
0dbb78f
2c2c365
4e85e92
15934ba
 
 
 
 
 
055f404
15934ba
 
 
 
 
 
 
 
 
 
 
055f404
15934ba
 
055f404
7b9da97
 
 
 
 
 
3020c69
7b9da97
 
 
 
 
98b32f1
7b9da97
 
 
 
 
1777fa6
7b9da97
 
 
 
 
 
 
 
 
 
 
 
 
055f404
5814747
055f404
5814747
055f404
 
 
 
5814747
 
055f404
5814747
 
055f404
5814747
055f404
5814747
055f404
5814747
055f404
7b9da97
055f404
 
 
 
 
 
42966de
3020c69
98b32f1
 
 
 
 
 
97e46d3
42966de
dac7224
 
3020c69
98b32f1
 
 
 
 
 
 
 
9813b68
dfb71ed
 
614dae3
 
42966de
 
5814747
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import gradio as gr
import tempfile
import openai
import requests
import os
from functools import partial

def tts(
    input_text: str,
    model: str,
    voice: str,
    api_key: str,
    response_format: str = "mp3",
    speed: float = 1.0,
) -> str:
    """
    Convert input text to speech using OpenAI's Text-to-Speech API.

    Parameters:
        input_text (str): The text to be converted to speech.
        model (str): The model to use for synthesis (e.g., 'tts-1', 'tts-1-hd').
        voice (str): The voice profile to use (e.g., 'alloy', 'echo', 'fable', etc.).
        api_key (str): OpenAI API key.
        response_format (str): The audio format of the output file (default is 'mp3').
        speed (float): The speed of the synthesized speech.

    Returns:
        str: File path to the generated audio file.

    Raises:
        gr.Error: If input parameters are invalid or API call fails.
    """
    if not api_key.strip():
        raise gr.Error(
            "API key is required. Get an API key at: https://platform.openai.com/account/api-keys"
        )

    if not input_text.strip():
        raise gr.Error("Input text cannot be empty.")

    openai.api_key = api_key

    try:
        response = openai.Audio.create(
            text=input_text,
            voice=voice,
            model=model,
            response_format=response_format,
            speed=speed,
        )
    except openai.OpenAIError as e:
        # Catch-all for OpenAI exceptions
        raise gr.Error(f"An OpenAI error occurred: {e}")
    except Exception as e:
        # Catch any other exceptions
        raise gr.Error(f"An unexpected error occurred: {e}")

    if not hasattr(response, "audio"):
        raise gr.Error(
            "Invalid response from OpenAI API. The response does not contain audio content."
        )

    # Save the audio content to a temporary file
    audio_content = response.audio
    file_extension = f".{response_format}"
    with tempfile.NamedTemporaryFile(suffix=file_extension, delete=False) as temp_file:
        temp_file.write(audio_content)
        temp_file_path = temp_file.name

    return temp_file_path

def main():
    """
    Main function to create and launch the Gradio interface.
    """
    MODEL_OPTIONS = ["tts-1", "tts-1-hd"]
    VOICE_OPTIONS = ["alloy", "echo", "fable", "onyx", "nova", "shimmer"]
    RESPONSE_FORMAT_OPTIONS = ["mp3", "opus", "aac", "flac", "wav", "pcm"]

    # Predefine voice previews URLs
    VOICE_PREVIEW_URLS = {
        voice: f"https://cdn.openai.com/API/docs/audio/{voice}.wav"
        for voice in VOICE_OPTIONS
    }

    # Download audio previews to disk before initiating the interface
    PREVIEW_DIR = "voice_previews"
    os.makedirs(PREVIEW_DIR, exist_ok=True)

    VOICE_PREVIEW_FILES = {}
    for voice, url in VOICE_PREVIEW_URLS.items():
        local_file_path = os.path.join(PREVIEW_DIR, f"{voice}.wav")
        if not os.path.exists(local_file_path):
            try:
                response = requests.get(url)
                response.raise_for_status()
                with open(local_file_path, "wb") as f:
                    f.write(response.content)
            except requests.exceptions.RequestException as e:
                print(f"Failed to download {voice} preview: {e}")
        VOICE_PREVIEW_FILES[voice] = local_file_path

    # Set static paths for Gradio to serve
    gr.set_static_paths(paths=[PREVIEW_DIR])

    # Create the 'preview_audio' component
    preview_audio = gr.Audio(
        interactive=False,
        label="Echo",
        value=VOICE_PREVIEW_FILES['echo'],
        visible=True,
        show_download_button=False,
        show_share_button=False,
        autoplay=True,
    )

    with gr.Blocks(title="OpenAI - Text to Speech") as demo:
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### Voice Preview")

                # Function to play the selected voice sample
                def play_voice_sample(voice):
                    return gr.update(
                        value=VOICE_PREVIEW_FILES[voice],
                        label=voice.capitalize(),
                    )

                # Create buttons for each voice
                for voice in VOICE_OPTIONS:
                    voice_button = gr.Button(
                        value=f"{voice.capitalize()}",
                        variant="secondary",
                        size="sm",
                    )
                    voice_button.click(
                        fn=partial(play_voice_sample, voice=voice),
                        outputs=preview_audio,
                    )

                # Place the audio player below the buttons
                preview_audio.render()

            with gr.Column(scale=1):
                api_key_input = gr.Textbox(
                    label="OpenAI API Key",
                    info="https://platform.openai.com/account/api-keys",
                    type="password",
                    placeholder="Enter your OpenAI API Key",
                )
                model_dropdown = gr.Dropdown(
                    choices=MODEL_OPTIONS,
                    label="Model",
                    value="tts-1",
                    info="Select tts-1 for speed or tts-1-hd for quality.",
                )
                voice_dropdown = gr.Dropdown(
                    choices=VOICE_OPTIONS,
                    label="Voice Options",
                    value="echo",
                    info="The voice to use when generating the audio.",
                )
                response_format_dropdown = gr.Dropdown(
                    choices=RESPONSE_FORMAT_OPTIONS,
                    label="Response Format",
                    value="mp3",
                )
                speed_slider = gr.Slider(
                    minimum=0.25,
                    maximum=4.0,
                    step=0.05,
                    label="Voice Speed",
                    value=1.0,
                )

            with gr.Column(scale=2):
                # Initialize the input textbox with the desired label
                input_textbox = gr.Textbox(
                    label="Input Text (0000 / 4096 chars)",
                    lines=10,
                    placeholder="Type your text here...",
                )

                # Function to update the label with the character count
                def update_label(input_text):
                    char_count = len(input_text)
                    new_label = f"Input Text ({char_count:04d} / 4096 chars)"
                    return gr.update(label=new_label)

                # Update the label when the text changes
                input_textbox.change(
                    fn=update_label,
                    inputs=input_textbox,
                    outputs=input_textbox,
                )

                submit_button = gr.Button(
                    "Convert Text to Speech",
                    variant="primary",
                )
            with gr.Column(scale=1):
                output_audio = gr.Audio(label="Output Audio")

        # Define the event handler for the submit button with error handling
        def on_submit(
            input_text, model, voice, api_key, response_format, speed
        ):
            audio_file = tts(
                input_text, model, voice, api_key, response_format, speed
            )
            return audio_file

        # Trigger the conversion when the submit button is clicked
        submit_button.click(
            fn=on_submit,
            inputs=[
                input_textbox,
                model_dropdown,
                voice_dropdown,
                api_key_input,
                response_format_dropdown,
                speed_slider,
            ],
            outputs=output_audio,
        )

    # Launch the Gradio app with error display enabled
    demo.launch(show_error=True)

if __name__ == "__main__":
    main()