File size: 8,240 Bytes
42966de
 
 
f43c5ad
6385f1b
98b32f1
 
 
 
 
 
 
 
 
 
a9471a7
 
 
 
 
 
98b32f1
a9471a7
98b32f1
 
a9471a7
 
 
 
 
 
 
97e46d3
9813b68
 
 
97e46d3
42966de
3020c69
42966de
98b32f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42966de
 
98b32f1
 
 
 
9813b68
98b32f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42966de
 
 
 
98b32f1
42966de
a9471a7
 
 
42966de
 
98b32f1
42966de
f43c5ad
6385f1b
9813b68
 
f43c5ad
 
6385f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
614dae3
98b32f1
6385f1b
e847c01
98b32f1
42966de
0dbb78f
98b32f1
 
 
 
 
 
0dbb78f
 
98b32f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dbb78f
f43c5ad
42966de
 
a8cd62f
 
 
3020c69
98b32f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1777fa6
a8cd62f
 
1777fa6
42966de
 
 
3020c69
98b32f1
 
 
 
 
 
97e46d3
42966de
dac7224
 
3020c69
98b32f1
 
 
 
 
 
 
 
9813b68
dfb71ed
 
614dae3
 
42966de
98b32f1
42966de
ce4caa3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import gradio as gr
import tempfile
import openai
import requests
import os
from functools import partial

def tts(
    input_text: str,
    model: str,
    voice: str,
    api_key: str,
    response_format: str = "mp3",
    speed: float = 1.0,
) -> str:
    """
    Convert input text to speech using OpenAI's Text-to-Speech API.

    Parameters:
        input_text (str): The text to be converted to speech.
        model (str): The model to use for synthesis (e.g., 'tts-1', 'tts-1-hd').
        voice (str): The voice to use when generating the audio.
        api_key (str): OpenAI API key.
        response_format (str): Format of the output audio. Defaults to 'mp3'.
        speed (float): Speed of the generated audio. Defaults to 1.0.

    Returns:
        str: File path to the generated audio file.

    Raises:
        gr.Error: If input parameters are invalid or API call fails.
    """
    if not api_key.strip():
        raise gr.Error(
            "API key is required. Get an API key at: https://platform.openai.com/account/api-keys"
        )

    if not input_text.strip():
        raise gr.Error("Input text cannot be empty.")

    if len(input_text) > 4096:
        raise gr.Error("Input text exceeds the maximum length of 4096 characters.")

    if speed < 0.25 or speed > 4.0:
        raise gr.Error("Speed must be between 0.25 and 4.0.")

    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json",
    }

    data = {
        "model": model,
        "input": input_text,
        "voice": voice,
        "response_format": response_format,
        "speed": speed,
    }

    try:
        response = requests.post(
            "https://api.openai.com/v1/audio/speech",
            headers=headers,
            json=data,
        )
        response.raise_for_status()
    except requests.exceptions.HTTPError as http_err:
        raise gr.Error(f"HTTP error occurred: {http_err} - {response.text}")
    except Exception as err:
        raise gr.Error(f"An error occurred: {err}")

    # The content will be the audio file content
    audio_content = response.content

    file_extension = response_format.lower()
    # PCM is raw data, so it does not have a standard file extension
    if file_extension == "pcm":
        file_extension = "raw"

    with tempfile.NamedTemporaryFile(
        suffix=f".{file_extension}", delete=False
    ) as temp_file:
        temp_file.write(audio_content)
        temp_file_path = temp_file.name

    return temp_file_path


def main():
    """
    Main function to create and launch the Gradio interface.
    """
    MODEL_OPTIONS = ["tts-1", "tts-1-hd"]
    VOICE_OPTIONS = ["alloy", "echo", "fable", "onyx", "nova", "shimmer"]
    RESPONSE_FORMAT_OPTIONS = ["mp3", "opus", "aac", "flac", "wav", "pcm"]

    # Predefine voice previews URLs
    VOICE_PREVIEW_URLS = {
        voice: f"https://cdn.openai.com/API/docs/audio/{voice}.wav"
        for voice in VOICE_OPTIONS
    }

    # Download audio previews to disk before initiating the interface
    PREVIEW_DIR = "voice_previews"
    os.makedirs(PREVIEW_DIR, exist_ok=True)

    VOICE_PREVIEW_FILES = {}
    for voice, url in VOICE_PREVIEW_URLS.items():
        local_file_path = os.path.join(PREVIEW_DIR, f"{voice}.wav")
        if not os.path.exists(local_file_path):
            try:
                response = requests.get(url)
                response.raise_for_status()
                with open(local_file_path, "wb") as f:
                    f.write(response.content)
            except requests.exceptions.RequestException as e:
                print(f"Failed to download {voice} preview: {e}")
        VOICE_PREVIEW_FILES[voice] = local_file_path

    # Set static paths for Gradio to serve
    gr.static(PREVIEW_DIR)

    with gr.Blocks(title="OpenAI - Text to Speech") as demo:
        gr.Markdown("# OpenAI Text-to-Speech Demo")
        with gr.Row():
            with gr.Column(scale=1):
                with gr.Group():
                    preview_audio = gr.Audio(
                        interactive=False,
                        label="Preview Audio",
                        value=None,
                        visible=True,
                    )

                    # Function to play the selected voice sample
                    def play_voice_sample(voice):
                        return gr.update(value=VOICE_PREVIEW_FILES[voice])

                    # Create buttons for each voice
                    for voice in VOICE_OPTIONS:
                        voice_button = gr.Button(
                            value=f"{voice.capitalize()}",
                            variant="secondary",
                            size="sm",
                        )
                        voice_button.click(
                            fn=partial(play_voice_sample, voice=voice),
                            outputs=preview_audio,
                        )

                with gr.Column(scale=1):
                    api_key_input = gr.Textbox(
                        label="OpenAI API Key",
                        info="https://platform.openai.com/account/api-keys",
                        type="password",
                        placeholder="Enter your OpenAI API Key",
                    )
                    model_dropdown = gr.Dropdown(
                        choices=MODEL_OPTIONS,
                        label="Model",
                        value="tts-1",
                        info="Select tts-1 for speed or tts-1-hd for quality.",
                    )
                    voice_dropdown = gr.Dropdown(
                        choices=VOICE_OPTIONS,
                        label="Voice Options",
                        value="echo",
                        info="The voice to use when generating the audio.",
                    )
                    response_format_dropdown = gr.Dropdown(
                        choices=RESPONSE_FORMAT_OPTIONS,
                        label="Response Format",
                        value="mp3",
                    )
                    speed_slider = gr.Slider(
                        minimum=0.25,
                        maximum=4.0,
                        step=0.05,
                        label="Voice Speed",
                        value=1.0,
                    )

            with gr.Column(scale=2):
                input_textbox = gr.Textbox(
                    label="Input Text",
                    lines=10,
                    placeholder="Type your text here...",
                )
                # Add a character counter below the input textbox
                char_count_text = gr.Markdown("0 / 4096")

                # Function to update the character count
                def update_char_count(input_text):
                    char_count = len(input_text)
                    return f"**{char_count} / 4096**"

                # Update character count when the user stops typing
                input_textbox.change(
                    fn=update_char_count,
                    inputs=input_textbox,
                    outputs=char_count_text,
                )

                submit_button = gr.Button(
                    "Convert Text to Speech",
                    variant="primary",
                )
            with gr.Column(scale=1):
                output_audio = gr.Audio(label="Output Audio")

        # Define the event handler for the submit button with error handling
        def on_submit(
            input_text, model, voice, api_key, response_format, speed
        ):
            audio_file = tts(
                input_text, model, voice, api_key, response_format, speed
            )
            return audio_file

        # Trigger the conversion when the submit button is clicked
        submit_button.click(
            fn=on_submit,
            inputs=[
                input_textbox,
                model_dropdown,
                voice_dropdown,
                api_key_input,
                response_format_dropdown,
                speed_slider,
            ],
            outputs=output_audio,
        )

    # Launch the Gradio app with error display enabled
    demo.launch(show_error=True)


if __name__ == "__main__":
    main()