Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn as nn | |
from torch.nn import functional as F | |
RESOLUTION_PATCH_NUMS_MAPPING = { | |
256: "1_2_3_4_5_6_8_10_13_16", | |
512: "1_2_3_4_6_9_13_18_24_32", | |
1024: "1_2_3_4_5_7_9_12_16_21_27_36_48_64", | |
} | |
def sample_with_top_k_top_p_( | |
logits_BlV: torch.Tensor, | |
top_k: int = 0, | |
top_p: float = 0.0, | |
rng=None, | |
num_samples=1, | |
) -> torch.Tensor: # return idx, shaped (B, l) | |
B, l, V = logits_BlV.shape | |
if top_k > 0: | |
idx_to_remove = logits_BlV < logits_BlV.topk( | |
top_k, largest=True, sorted=False, dim=-1 | |
)[0].amin(dim=-1, keepdim=True) | |
logits_BlV.masked_fill_(idx_to_remove, -torch.inf) | |
if top_p > 0: | |
sorted_logits, sorted_idx = logits_BlV.sort(dim=-1, descending=False) | |
sorted_idx_to_remove = sorted_logits.softmax(dim=-1).cumsum_(dim=-1) <= (1 - top_p) | |
sorted_idx_to_remove[..., -1:] = False | |
logits_BlV.masked_fill_( | |
sorted_idx_to_remove.scatter( | |
sorted_idx.ndim - 1, sorted_idx, sorted_idx_to_remove | |
), | |
-torch.inf, | |
) | |
# sample (have to squeeze cuz torch.multinomial can only be used for 2D tensor) | |
replacement = num_samples >= 0 | |
num_samples = abs(num_samples) | |
return torch.multinomial( | |
logits_BlV.softmax(dim=-1).view(-1, V), | |
num_samples=num_samples, | |
replacement=replacement, | |
generator=rng, | |
).view(B, l, num_samples) | |
def gumbel_softmax_with_rng( | |
logits: torch.Tensor, | |
tau: float = 1, | |
hard: bool = False, | |
eps: float = 1e-10, | |
dim: int = -1, | |
rng: torch.Generator | None = None, | |
) -> torch.Tensor: | |
if rng is None: | |
return F.gumbel_softmax(logits=logits, tau=tau, hard=hard, eps=eps, dim=dim) | |
gumbels = ( | |
-torch.empty_like(logits, memory_format=torch.legacy_contiguous_format) | |
.exponential_(generator=rng) | |
.log() | |
) | |
gumbels = (logits + gumbels) / tau | |
y_soft = gumbels.softmax(dim) | |
if hard: | |
index = y_soft.max(dim, keepdim=True)[1] | |
y_hard = torch.zeros_like( | |
logits, memory_format=torch.legacy_contiguous_format | |
).scatter_(dim, index, 1.0) | |
ret = y_hard - y_soft.detach() + y_soft | |
else: | |
ret = y_soft | |
return ret | |
def drop_path( | |
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True | |
): # taken from timm | |
if drop_prob == 0.0 or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
if keep_prob > 0.0 and scale_by_keep: | |
random_tensor.div_(keep_prob) | |
return x * random_tensor | |
class DropPath(nn.Module): # taken from timm | |
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
self.scale_by_keep = scale_by_keep | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) | |
def extra_repr(self): | |
return f"(drop_prob=...)" | |