File size: 18,054 Bytes
cd02b8a cb16eb2 cd02b8a cb16eb2 cd02b8a cb16eb2 cd02b8a cb16eb2 cd02b8a cb16eb2 cd02b8a cb16eb2 cd02b8a cb16eb2 cd02b8a cb16eb2 cd02b8a cb16eb2 cd02b8a cb16eb2 cd02b8a cb16eb2 cd02b8a cb16eb2 cd02b8a cb16eb2 cd02b8a cb16eb2 cd02b8a cb16eb2 cd02b8a cb16eb2 cd02b8a cb16eb2 cd02b8a cb16eb2 cd02b8a cb16eb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
import asyncio
import base64
import time
import uuid
import shutil
import hashlib
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
from typing import List, Optional, Tuple
import subprocess
import ebooklib
import gradio as gr
import torch
import torchaudio
from ebooklib import epub
from bs4 import BeautifulSoup
from auralis import TTS, TTSRequest, TTSOutput, AudioPreprocessingConfig, setup_logger
logger = setup_logger(__file__)
tts = TTS()
model_path = "AstraMindAI/xttsv2" # change this if you have a different model
gpt_model = "AstraMindAI/xtts2-gpt"
try:
tts = tts.from_pretrained(model_path, gpt_model=gpt_model)
logger.info(f"Successfully loaded model {model_path}")
except Exception as e:
logger.error(f"Failed to load model: {e}. Ensure that the model exists at {model_path}")
# Create a temporary directory to store short-named files
temp_dir = Path("/tmp/auralis")
temp_dir.mkdir(exist_ok=True)
def convert_ebook_to_txt(input_path: str) -> str:
"""
Convert any ebook format to txt using calibre's ebook-convert
Returns the path to the converted txt file
"""
output_path = str(temp_dir / f"{uuid.uuid4().hex[:8]}.txt")
try:
subprocess.run(['ebook-convert', input_path, output_path],
check=True, capture_output=True, text=True)
return output_path
except subprocess.CalledProcessError as e:
logger.error(f"Conversion failed: {e.stderr}")
raise RuntimeError(f"Failed to convert ebook: {e.stderr}")
def shorten_filename(original_path: str) -> str:
"""Copies the given file to a temporary directory with a shorter, random filename."""
ext = Path(original_path).suffix
short_name = "file_" + uuid.uuid4().hex[:8] + ext
short_path = temp_dir / short_name
shutil.copyfile(original_path, short_path)
return str(short_path)
def text_from_file(file_path: str) -> str:
"""Read text from a file, converting if necessary."""
file_ext = Path(file_path).suffix.lower()
if file_ext in ['.txt']:
with open(file_path, 'r', encoding='utf-8') as f:
return f.read()
else:
# Convert other formats to txt first
txt_path = convert_ebook_to_txt(file_path)
with open(txt_path, 'r', encoding='utf-8') as f:
return f.read()
def clone_voice(audio_path: str):
"""Clone a voice from an audio path."""
audio_short_path = shorten_filename(audio_path)
with open(audio_short_path, "rb") as f:
audio_data = base64.b64encode(f.read()).decode('utf-8')
return audio_data
def chunk_text(text: str, max_words: int = 300) -> List[str]:
"""
Splits the input text into chunks with a maximum of `max_words` per chunk.
"""
words = text.split()
chunks = []
for i in range(0, len(words), max_words):
chunk = ' '.join(words[i:i + max_words])
chunks.append(chunk)
return chunks
def generate_audio_from_chunks(
chunks: List[str],
ref_audio_files: List[str],
speed: float,
enhance_speech: bool,
temperature: float,
top_p: float,
top_k: int,
repetition_penalty: float,
language: str
) -> Tuple[Optional[str], str]:
"""
Generates audio for each text chunk and combines them into a single audio file.
Returns the path to the combined audio file and a log message.
"""
audio_files = []
log_messages = ""
for idx, chunk in enumerate(chunks):
result, log = process_text_and_generate(
chunk, ref_audio_files, speed, enhance_speech, temperature,
top_p, top_k, repetition_penalty, language
)
if result:
sample_rate, audio_array = result
# Save audio array to temp file
audio_path = temp_dir / f"chunk_{uuid.uuid4().hex[:8]}_{idx}.wav"
audio_tensor = torch.from_numpy(audio_array)
torchaudio.save(str(audio_path), audio_tensor.unsqueeze(0), sample_rate)
audio_files.append(str(audio_path))
log_messages += f"β
Generated audio for chunk {idx + 1}/{len(chunks)}\n"
else:
logger.error(f"Failed to generate audio for chunk {idx}: {log}")
log_messages += f"β Failed to generate audio for chunk {idx + 1}: {log}\n"
return None, log_messages
# Create a list file for ffmpeg
list_file = temp_dir / f"list_{uuid.uuid4().hex[:8]}.txt"
with open(list_file, 'w') as f:
for audio_file in audio_files:
f.write(f"file '{audio_file}'\n")
# Define the output combined audio path
combined_audio_path = temp_dir / f"combined_{uuid.uuid4().hex[:8]}.wav"
try:
subprocess.run(
[
'ffmpeg', '-y', '-f', 'concat', '-safe', '0',
'-i', str(list_file),
'-c', 'copy',
str(combined_audio_path)
],
check=True,
capture_output=True,
text=True
)
log_messages += "β
Successfully combined all audio chunks."
return str(combined_audio_path), log_messages
except subprocess.CalledProcessError as e:
logger.error(f"Failed to combine audio files: {e.stderr}")
log_messages += f"β Failed to combine audio files: {e.stderr}"
return None, log_messages
def process_text_and_generate(
input_text: str,
ref_audio_files: List[str],
speed: float,
enhance_speech: bool,
temperature: float,
top_p: float,
top_k: int,
repetition_penalty: float,
language: str
) -> Tuple[Optional[Tuple[int, np.ndarray]], str]:
"""Process text and generate audio."""
log_messages = ""
if not ref_audio_files:
log_messages += "Please provide at least one reference audio!\n"
return None, log_messages
# Clone voices from all file paths (shorten them)
base64_voices = ref_audio_files[:5]
request = TTSRequest(
text=input_text,
speaker_files=base64_voices,
stream=False,
enhance_speech=enhance_speech,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
language=language,
)
try:
with torch.no_grad():
output = tts.generate_speech(request)
if output:
if speed != 1:
output.change_speed(speed)
log_messages += f"β
Successfully Generated audio\n"
return (output.sample_rate, output.array), log_messages
else:
log_messages += "β No output was generated. Check that the model was correctly loaded\n"
return None, log_messages
except Exception as e:
logger.error(f"Error: {e}")
log_messages += f"β An Error occurred: {e}\n"
return None, log_messages
def build_gradio_ui():
"""Builds and launches the Gradio UI for Auralis."""
with gr.Blocks(title="Auralis TTS Demo", theme="soft") as ui:
gr.Markdown(
"""
# Auralis Text-to-Speech Demo π
Convert text or ebooks to speech with advanced voice cloning and enhancement.
"""
)
with gr.Tab("File to Speech"):
with gr.Row():
with gr.Column():
file_input = gr.File(
label="Upload Book/Text File",
file_types=[
".txt", ".epub", ".mobi", ".azw3", ".fb2",
".htmlz", ".lit", ".pdb", ".pdf", ".rtf"
]
)
ref_audio_files = gr.Files(
label="Reference Audio Files",
file_types=["audio"]
)
with gr.Accordion("Advanced settings", open=False):
speed = gr.Slider(
label="Playback speed",
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1
)
enhance_speech = gr.Checkbox(
label="Enhance Reference Speech",
value=False
)
temperature = gr.Slider(
label="Temperature",
minimum=0.5,
maximum=1.0,
value=0.75,
step=0.05
)
top_p = gr.Slider(
label="Top P",
minimum=0.5,
maximum=1.0,
value=0.85,
step=0.05
)
top_k = gr.Slider(
label="Top K",
minimum=0,
maximum=100,
value=50,
step=10
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=10.0,
value=5.0,
step=0.5
)
language = gr.Dropdown(
label="Target Language",
choices=[
"en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru",
"nl", "cs", "ar", "zh-cn", "hu", "ko", "ja", "hi", "auto",
],
value="auto"
)
generate_button = gr.Button("Generate Speech")
with gr.Column():
audio_output = gr.Audio(label="Generated Audio")
log_output = gr.Textbox(label="Log Output", lines=10)
def process_file_and_generate(
file_input, ref_audio_files, speed, enhance_speech,
temperature, top_p, top_k, repetition_penalty, language
):
if not file_input:
return None, "β Please provide an input file!"
try:
# Convert input file to text
input_text = text_from_file(file_input.name)
# Chunk the text
chunks = chunk_text(input_text, max_words=300)
# Generate audio from chunks and combine
combined_audio_path, log = generate_audio_from_chunks(
chunks, ref_audio_files, speed, enhance_speech, temperature, top_p,
top_k, repetition_penalty, language
)
if combined_audio_path:
# Read the combined audio file to return as audio output
waveform, sr = torchaudio.load(combined_audio_path)
return (sr, waveform.numpy()), log
else:
return None, log
except Exception as e:
logger.error(f"Error processing file: {e}")
return None, f"β Error processing file: {str(e)}"
generate_button.click(
process_file_and_generate,
inputs=[
file_input, ref_audio_files, speed, enhance_speech,
temperature, top_p, top_k, repetition_penalty, language
],
outputs=[audio_output, log_output],
)
with gr.Tab("Clone With Microphone"):
with gr.Row():
with gr.Column():
file_input_mic = gr.File(
label="Upload Book/Text File",
file_types=[
".txt", ".epub", ".mobi", ".azw3", ".fb2",
".htmlz", ".lit", ".pdb", ".pdf", ".rtf"
]
)
mic_ref_audio = gr.Audio(
label="Record Reference Audio",
source="microphone",
type="numpy"
)
with gr.Accordion("Advanced settings", open=False):
speed_mic = gr.Slider(
label="Playback speed",
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1
)
enhance_speech_mic = gr.Checkbox(
label="Enhance Reference Speech",
value=True
)
temperature_mic = gr.Slider(
label="Temperature",
minimum=0.5,
maximum=1.0,
value=0.75,
step=0.05
)
top_p_mic = gr.Slider(
label="Top P",
minimum=0.5,
maximum=1.0,
value=0.85,
step=0.05
)
top_k_mic = gr.Slider(
label="Top K",
minimum=0,
maximum=100,
value=50,
step=10
)
repetition_penalty_mic = gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=10.0,
value=5.0,
step=0.5
)
language_mic = gr.Dropdown(
label="Target Language",
choices=[
"en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru",
"nl", "cs", "ar", "zh-cn", "hu", "ko", "ja", "hi", "auto",
],
value="auto"
)
generate_button_mic = gr.Button("Generate Speech")
with gr.Column():
audio_output_mic = gr.Audio(label="Generated Audio")
log_output_mic = gr.Textbox(label="Log Output", lines=10)
def process_mic_and_generate(
file_input, mic_ref_audio, speed_mic, enhance_speech_mic,
temperature_mic, top_p_mic, top_k_mic, repetition_penalty_mic, language_mic
):
if mic_ref_audio is None:
return None, "β Please record an audio!"
if not file_input:
return None, "β Please provide an input file!"
try:
# Convert input file to text
input_text = text_from_file(file_input.name)
# Save microphone audio
data = str(time.time()).encode("utf-8")
hash = hashlib.sha1(data).hexdigest()[:10]
output_path = temp_dir / (f"mic_{hash}.wav")
# Ensure mic_ref_audio is in the correct format
if isinstance(mic_ref_audio, tuple):
mic_waveform, mic_sr = mic_ref_audio
torch_audio = torch.from_numpy(mic_waveform.astype(float))
torchaudio.save(
str(output_path),
torch_audio.unsqueeze(0),
mic_sr
)
else:
# If mic_ref_audio is not a tuple, handle accordingly
logger.error("Invalid microphone audio format.")
return None, "β Invalid microphone audio format."
# Clone voice from the saved mic audio
ref_audio_files = [str(output_path)]
# Chunk the text
chunks = chunk_text(input_text, max_words=300)
# Generate audio from chunks and combine
combined_audio_path, log = generate_audio_from_chunks(
chunks, ref_audio_files, speed_mic, enhance_speech_mic,
temperature_mic, top_p_mic, top_k_mic, repetition_penalty_mic,
language_mic
)
if combined_audio_path:
# Read the combined audio file to return as audio output
waveform, sr = torchaudio.load(combined_audio_path)
return (sr, waveform.numpy()), log
else:
return None, log
except Exception as e:
logger.error(f"Error processing input: {e}")
return None, f"β Error processing input: {str(e)}"
generate_button_mic.click(
process_mic_and_generate,
inputs=[
file_input_mic, mic_ref_audio, speed_mic,
enhance_speech_mic, temperature_mic, top_p_mic,
top_k_mic, repetition_penalty_mic, language_mic
],
outputs=[audio_output_mic, log_output_mic],
)
return ui
if __name__ == "__main__":
ui = build_gradio_ui()
ui.launch(debug=True, server_name="0.0.0.0", server_port=7860)
|