File size: 8,699 Bytes
c6b13bd
a26dce9
c6b13bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaa8c83
 
c6b13bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8012949
c6b13bd
 
 
 
 
 
 
 
 
8012949
c6b13bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a26dce9
7642e05
32fae2e
7642e05
a26dce9
32fae2e
7642e05
a26dce9
7642e05
a26dce9
 
7642e05
 
a26dce9
c6b13bd
32fae2e
 
c6b13bd
 
a26dce9
 
 
 
c6b13bd
 
 
 
 
32fae2e
 
 
c6b13bd
 
 
989fd36
 
 
 
 
 
 
 
 
32fae2e
aaa8c83
32fae2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6b13bd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import gradio as gr
from edge_tts import list_voices
import edge_tts
import asyncio
import tempfile
import numpy as np
import soxr
from pydub import AudioSegment
import torch
import sentencepiece as spm
import onnxruntime as ort
from huggingface_hub import hf_hub_download, InferenceClient
import requests
from bs4 import BeautifulSoup
import urllib
import random
import re
import time


# List of user agents to choose from for requests
_useragent_list = [
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
    'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
]

def get_useragent():
    """Returns a random user agent from the list."""
    return random.choice(_useragent_list)

def extract_text_from_webpage(html_content):
    """Extracts visible text from HTML content using BeautifulSoup."""
    soup = BeautifulSoup(html_content, "html.parser")
    # Remove unwanted tags
    for tag in soup(["script", "style", "header", "footer", "nav"]):
        tag.extract()
    # Get the remaining visible text
    visible_text = soup.get_text(strip=True)
    visible_text = visible_text[:8000]
    return visible_text

def search(term, num_results=2, timeout=5, ssl_verify=None):
    """Performs a Google search and returns the results."""
    escaped_term = urllib.parse.quote_plus(term)
    all_results = []
    resp = requests.get(
            url="https://www.google.com/search",
            headers={"User-Agent": get_useragent()}, # Set random user agent
            params={
                "q": term,
                "num": num_results,
                "udm": 14,
            },
            timeout=timeout,
            verify=ssl_verify,
        )
    resp.raise_for_status() # Raise an exception if request fails
    soup = BeautifulSoup(resp.text, "html.parser")
    result_block = soup.find_all("div", attrs={"class": "g"})
    for result in result_block:
        link = result.find("a", href=True)
        if link:
            link = link["href"]
            try:
                    # Fetch webpage content
                webpage = requests.get(link, headers={"User-Agent": get_useragent()})
                webpage.raise_for_status()
                    # Extract visible text from webpage
                visible_text = extract_text_from_webpage(webpage.text)
                all_results.append({"link": link, "text": visible_text})
            except requests.exceptions.RequestException as e:
                print(f"Error fetching or processing {link}: {e}")
                all_results.append({"link": link, "text": None})
        else:
            all_results.append({"link": None, "text": None})
    print(all_results)
    return all_results

# Speech Recognition Model Configuration
model_name = "neongeckocom/stt_pt_citrinet_512_gamma_0_25"
sample_rate = 16000

# Download preprocessor, encoder and tokenizer
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))

# Mistral Model Configuration
client1 = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
system_instructions1 = "<s>[SYSTEM] Responda como OpenGPT 4o, Feito por 'KingNish', Mantenha a conversa muito curta, clara, amigável e concisa. O texto fornecido é uma solicitação de um tipo específico de resposta sua, assistente virtual. A solicitação pede que você forneça respostas amigáveis. A expectativa é que eu evite apresentações e passe a responder a dúvida diretamente, elaborando todos os aspectos da solicitação. Como um assistente com tecnologia de IA, sua tarefa é gerar respostas que pareçam ter sido criadas pelo usuário e não por um assistente com tecnologia de IA. [USER]"

def resample(audio_fp32, sr):
    return soxr.resample(audio_fp32, sr, sample_rate)

def to_float32(audio_buffer):
    return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)

def transcribe(audio_path):
    audio_file = AudioSegment.from_file(audio_path)
    sr = audio_file.frame_rate
    audio_buffer = np.array(audio_file.get_array_of_samples())

    audio_fp32 = to_float32(audio_buffer)
    audio_16k = resample(audio_fp32, sr)

    input_signal = torch.tensor(audio_16k).unsqueeze(0)
    length = torch.tensor(len(audio_16k)).unsqueeze(0)
    processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
    
    logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]

    blank_id = tokenizer.vocab_size()
    decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
    text = tokenizer.decode_ids(decoded_prediction)

    return text

def model(text, web_search):
    if web_search is True:
        """Performs a web search, feeds the results to a language model, and returns the answer."""
        web_results = search(text)
        web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
        formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
        stream = client1.text_generation(formatted_prompt, max_new_tokens=300, stream=True, details=True, return_full_text=False)
        return "".join([response.token.text for response in stream if response.token.text != "</s>"])
    else:
        formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
        stream = client1.text_generation(formatted_prompt, max_new_tokens=300, stream=True, details=True, return_full_text=False)
        return "".join([response.token.text for response in stream if response.token.text != "</s>"])


async def get_voices():
    voices = await edge_tts.list_voices()
    return list(voices)

# Executar a função assíncrona para obter as vozes
voices = asyncio.run(get_voices())

# Filtrar as vozes em português do Brasil
pt_br_voices = [voice for voice in voices if voice["Locale"] == "pt-BR"]

# Escolher uma voz (por exemplo, a primeira da lista)
chosen_voice = pt_br_voices[0]["Name"] if pt_br_voices else None

async def respond(audio, web_search):
    if audio is None:
        return None
    user = transcribe(audio)
    reply = model(user, web_search)
    if chosen_voice:
        communicate = edge_tts.Communicate(reply, voice=chosen_voice)
    else:
        communicate = edge_tts.Communicate(reply)  # Usa a voz padrão se nenhuma voz pt-BR for encontrada
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    return tmp_path

def transcribe_and_respond(audio, web_search):
    return asyncio.run(respond(audio, web_search))

with gr.Blocks() as demo:    
    with gr.Row():
        web_search = gr.Checkbox(label="Web Search", value=False)
        Adjusted Gradio Audio Component with Silence Threshold

        input_audio = gr.Audio(
            sources=["microphone"],
            type="filepath",
            streaming=True,
            min_value=-0.1,  # Adjust this value to set the silence threshold
            max_value=0.1    # Adjust this value to set the silence threshold
        )
        output_audio = gr.Audio(label="AI Response", autoplay=True)

    is_recording = gr.State(False)
    last_interaction_time = gr.State(time.time())

    def toggle_recording():
        return not is_recording.value

    def process_audio(audio, web_search, is_rec):
        current_time = time.time()
        if is_rec and (current_time - last_interaction_time.value > 2):
            last_interaction_time.value = current_time
            return transcribe_and_respond(audio, web_search), False
        return None, is_rec

    input_audio.stream(process_audio, inputs=[input_audio, web_search, is_recording], outputs=[output_audio, is_recording])

    demo.load(toggle_recording, outputs=[is_recording])

if __name__ == "__main__":
    demo.queue(max_size=200).launch()