Spaces:
Running
Running
drguilhermeapolinario
commited on
Update views/maps.py
Browse files- views/maps.py +186 -186
views/maps.py
CHANGED
@@ -1,187 +1,187 @@
|
|
1 |
-
import folium
|
2 |
-
import geopandas as gpd
|
3 |
-
import plotly.express as px
|
4 |
-
from branca.colormap import LinearColormap
|
5 |
-
from folium.plugins import HeatMap
|
6 |
-
from streamlit_folium import folium_static
|
7 |
-
|
8 |
-
import streamlit as st
|
9 |
-
from streamlit_extras.stylable_container import stylable_container
|
10 |
-
from streamlit_extras.add_vertical_space import add_vertical_space
|
11 |
-
import streamlit_shadcn_ui as ui
|
12 |
-
|
13 |
-
with stylable_container(
|
14 |
-
key="banner",
|
15 |
-
css_styles="""
|
16 |
-
img {
|
17 |
-
width: 1800px;
|
18 |
-
height: 400px;
|
19 |
-
overflow: hidden;
|
20 |
-
position: relative;
|
21 |
-
object-fit: cover;
|
22 |
-
border-radius: 20px; /* Adiciona bordas arredondadas */
|
23 |
-
mask-image: linear-gradient(to bottom, rgba(0, 0, 0, 1), rgba(0, 0, 0, 0));
|
24 |
-
-webkit-mask-image: linear-gradient(to bottom, rgba(0, 0, 0, 1), rgba(0, 0, 0, 0)); /* For Safari */
|
25 |
-
}
|
26 |
-
""",
|
27 |
-
):
|
28 |
-
st.image("
|
29 |
-
|
30 |
-
st.title("Mapas da área")
|
31 |
-
add_vertical_space(5)
|
32 |
-
st.markdown(""" ### :world_map: **UBS Flamengo: (IBGE 2022)** """)
|
33 |
-
add_vertical_space(5)
|
34 |
-
|
35 |
-
|
36 |
-
@st.cache_data
|
37 |
-
def load_data():
|
38 |
-
"""
|
39 |
-
A function that loads and reads geojson data for UBS Flamengo and converts it to the specified coordinate reference system.
|
40 |
-
"""
|
41 |
-
return gpd.read_file("views\\flamengo_ibge2022.geojson").to_crs(epsg=4326)
|
42 |
-
|
43 |
-
gdf = load_data()
|
44 |
-
LATITUDE = -19.971591804
|
45 |
-
LONGITUDE = -44.057912815
|
46 |
-
lat = -19.96214
|
47 |
-
long = -44.05603
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
total_pop = gdf["POP"].sum()
|
52 |
-
col1, col2, col3 = st.columns([1, 1, 5])
|
53 |
-
|
54 |
-
with col1:
|
55 |
-
# st.write(f"###### População Total: {total_pop:,}")
|
56 |
-
map_type = st.selectbox("Tipo de mapa", ["População", "Densidade", "Heatmap"])
|
57 |
-
|
58 |
-
with col2:
|
59 |
-
# st.write(f"###### Número de Setores Censitários: {len(gdf)}")
|
60 |
-
base_map = st.selectbox("Mapa base", ["Cartodb Positron", "OpenStreetMap"])
|
61 |
-
|
62 |
-
with col3:
|
63 |
-
total_pop = gdf["POP"].sum()
|
64 |
-
st.write(
|
65 |
-
f"### 👪 População Total: {total_pop:,} habitantes, dados do Censo 2022 IBGE"
|
66 |
-
)
|
67 |
-
st.write(f"### 🗺️ Número de Setores Censitários: {len(gdf)}")
|
68 |
-
|
69 |
-
add_vertical_space(5)
|
70 |
-
add_vertical_space(5)
|
71 |
-
|
72 |
-
col1, col2 = st.columns(2)
|
73 |
-
with col1:
|
74 |
-
m = folium.Map(
|
75 |
-
location=[LATITUDE, LONGITUDE], tiles=base_map, zoom_start=15
|
76 |
-
)
|
77 |
-
dns_p = "Densidade pop. (hab/km²) UBS Flamengo - IBGE 2022"
|
78 |
-
if map_type in ["População", "Densidade"]:
|
79 |
-
if map_type == "População":
|
80 |
-
column = "POP"
|
81 |
-
caption = "Pop. residente UBS Flamengo IBGE 2022"
|
82 |
-
else:
|
83 |
-
gdf["DENSIDADE"] = gdf["POP"] / gdf["AREA_KM2"]
|
84 |
-
column = "DENSIDADE"
|
85 |
-
caption = dns_p
|
86 |
-
colorscale = px.colors.sequential.Viridis
|
87 |
-
colormap = LinearColormap(
|
88 |
-
colors=colorscale,
|
89 |
-
vmin=gdf[column].min(),
|
90 |
-
vmax=gdf[column].max(),
|
91 |
-
caption=caption,
|
92 |
-
)
|
93 |
-
folium.GeoJson(
|
94 |
-
gdf,
|
95 |
-
style_function=lambda feature: {
|
96 |
-
"fillColor": colormap(feature["properties"][column]),
|
97 |
-
"color": "black",
|
98 |
-
"weight": 1,
|
99 |
-
"fillOpacity": 0.7,
|
100 |
-
},
|
101 |
-
highlight_function=lambda feature: {
|
102 |
-
"fillColor": "#ffaf00",
|
103 |
-
"color": "green",
|
104 |
-
"weight": 3,
|
105 |
-
"fillOpacity": 0.9,
|
106 |
-
},
|
107 |
-
tooltip=folium.features.GeoJsonTooltip(
|
108 |
-
fields=["CD_SETOR", column, "AREA_KM2"],
|
109 |
-
aliases=[
|
110 |
-
"Setor Censitário:",
|
111 |
-
f"{caption}:",
|
112 |
-
"Área (km²):",
|
113 |
-
],
|
114 |
-
style=(
|
115 |
-
"background-color: white; color: #333333;"
|
116 |
-
"font-family: calibri; font-size: 12px;"
|
117 |
-
"padding: 10px;"
|
118 |
-
),
|
119 |
-
),
|
120 |
-
).add_to(m)
|
121 |
-
colormap.add_to(m)
|
122 |
-
|
123 |
-
elif map_type == "Heatmap":
|
124 |
-
heat_data = [
|
125 |
-
[
|
126 |
-
row["geometry"].centroid.y,
|
127 |
-
row["geometry"].centroid.x,
|
128 |
-
row["POP"],
|
129 |
-
]
|
130 |
-
for idx, row in gdf.iterrows()
|
131 |
-
]
|
132 |
-
HeatMap(heat_data).add_to(m)
|
133 |
-
folium.Marker(
|
134 |
-
[lat, long],
|
135 |
-
popup="UBS Flamengo",
|
136 |
-
tooltip="UBS Flamengo",
|
137 |
-
icon=folium.Icon(color="red", icon="info-sign"),
|
138 |
-
).add_to(m)
|
139 |
-
|
140 |
-
STYLE_STATEMENT = (
|
141 |
-
"<style>.leaflet-control-layers"
|
142 |
-
"{ position: fixed; top: 10px; left: 50px; } </style>"
|
143 |
-
)
|
144 |
-
m.get_root().html.add_child(folium.Element(STYLE_STATEMENT))
|
145 |
-
folium_static(m)
|
146 |
-
|
147 |
-
with col2:
|
148 |
-
fig = px.bar(
|
149 |
-
gdf,
|
150 |
-
x="CD_SETOR",
|
151 |
-
y="POP",
|
152 |
-
title="Distribuição da População por Setor Censitário",
|
153 |
-
color="POP",
|
154 |
-
color_continuous_scale=px.colors.sequential.Viridis,
|
155 |
-
)
|
156 |
-
st.plotly_chart(fig)
|
157 |
-
|
158 |
-
age_columns = [
|
159 |
-
"POP_0A4",
|
160 |
-
"POP_5A9",
|
161 |
-
"POP_10A14",
|
162 |
-
"POP_15A19",
|
163 |
-
"POP_20A24",
|
164 |
-
"POP_25A29",
|
165 |
-
"POP_30A34",
|
166 |
-
"POP_35A39",
|
167 |
-
"POP_40A44",
|
168 |
-
"POP_45A49",
|
169 |
-
"POP_50A54",
|
170 |
-
"POP_55A59",
|
171 |
-
"POP_60A64",
|
172 |
-
"POP_65A69",
|
173 |
-
"POP_70A74",
|
174 |
-
"POP_75A79",
|
175 |
-
"POP_80A84",
|
176 |
-
"POP_85A89",
|
177 |
-
"POP_90A94",
|
178 |
-
"POP_95A99",
|
179 |
-
"POP_100OUMAIS",
|
180 |
-
]
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
add_vertical_space(10)
|
185 |
-
|
186 |
-
|
187 |
st.write('----')
|
|
|
1 |
+
import folium
|
2 |
+
import geopandas as gpd
|
3 |
+
import plotly.express as px
|
4 |
+
from branca.colormap import LinearColormap
|
5 |
+
from folium.plugins import HeatMap
|
6 |
+
from streamlit_folium import folium_static
|
7 |
+
|
8 |
+
import streamlit as st
|
9 |
+
from streamlit_extras.stylable_container import stylable_container
|
10 |
+
from streamlit_extras.add_vertical_space import add_vertical_space
|
11 |
+
import streamlit_shadcn_ui as ui
|
12 |
+
|
13 |
+
with stylable_container(
|
14 |
+
key="banner",
|
15 |
+
css_styles="""
|
16 |
+
img {
|
17 |
+
width: 1800px;
|
18 |
+
height: 400px;
|
19 |
+
overflow: hidden;
|
20 |
+
position: relative;
|
21 |
+
object-fit: cover;
|
22 |
+
border-radius: 20px; /* Adiciona bordas arredondadas */
|
23 |
+
mask-image: linear-gradient(to bottom, rgba(0, 0, 0, 1), rgba(0, 0, 0, 0));
|
24 |
+
-webkit-mask-image: linear-gradient(to bottom, rgba(0, 0, 0, 1), rgba(0, 0, 0, 0)); /* For Safari */
|
25 |
+
}
|
26 |
+
""",
|
27 |
+
):
|
28 |
+
st.image("mp.jpg")
|
29 |
+
|
30 |
+
st.title("Mapas da área")
|
31 |
+
add_vertical_space(5)
|
32 |
+
st.markdown(""" ### :world_map: **UBS Flamengo: (IBGE 2022)** """)
|
33 |
+
add_vertical_space(5)
|
34 |
+
|
35 |
+
|
36 |
+
@st.cache_data
|
37 |
+
def load_data():
|
38 |
+
"""
|
39 |
+
A function that loads and reads geojson data for UBS Flamengo and converts it to the specified coordinate reference system.
|
40 |
+
"""
|
41 |
+
return gpd.read_file("views\\flamengo_ibge2022.geojson").to_crs(epsg=4326)
|
42 |
+
|
43 |
+
gdf = load_data()
|
44 |
+
LATITUDE = -19.971591804
|
45 |
+
LONGITUDE = -44.057912815
|
46 |
+
lat = -19.96214
|
47 |
+
long = -44.05603
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
total_pop = gdf["POP"].sum()
|
52 |
+
col1, col2, col3 = st.columns([1, 1, 5])
|
53 |
+
|
54 |
+
with col1:
|
55 |
+
# st.write(f"###### População Total: {total_pop:,}")
|
56 |
+
map_type = st.selectbox("Tipo de mapa", ["População", "Densidade", "Heatmap"])
|
57 |
+
|
58 |
+
with col2:
|
59 |
+
# st.write(f"###### Número de Setores Censitários: {len(gdf)}")
|
60 |
+
base_map = st.selectbox("Mapa base", ["Cartodb Positron", "OpenStreetMap"])
|
61 |
+
|
62 |
+
with col3:
|
63 |
+
total_pop = gdf["POP"].sum()
|
64 |
+
st.write(
|
65 |
+
f"### 👪 População Total: {total_pop:,} habitantes, dados do Censo 2022 IBGE"
|
66 |
+
)
|
67 |
+
st.write(f"### 🗺️ Número de Setores Censitários: {len(gdf)}")
|
68 |
+
|
69 |
+
add_vertical_space(5)
|
70 |
+
add_vertical_space(5)
|
71 |
+
|
72 |
+
col1, col2 = st.columns(2)
|
73 |
+
with col1:
|
74 |
+
m = folium.Map(
|
75 |
+
location=[LATITUDE, LONGITUDE], tiles=base_map, zoom_start=15
|
76 |
+
)
|
77 |
+
dns_p = "Densidade pop. (hab/km²) UBS Flamengo - IBGE 2022"
|
78 |
+
if map_type in ["População", "Densidade"]:
|
79 |
+
if map_type == "População":
|
80 |
+
column = "POP"
|
81 |
+
caption = "Pop. residente UBS Flamengo IBGE 2022"
|
82 |
+
else:
|
83 |
+
gdf["DENSIDADE"] = gdf["POP"] / gdf["AREA_KM2"]
|
84 |
+
column = "DENSIDADE"
|
85 |
+
caption = dns_p
|
86 |
+
colorscale = px.colors.sequential.Viridis
|
87 |
+
colormap = LinearColormap(
|
88 |
+
colors=colorscale,
|
89 |
+
vmin=gdf[column].min(),
|
90 |
+
vmax=gdf[column].max(),
|
91 |
+
caption=caption,
|
92 |
+
)
|
93 |
+
folium.GeoJson(
|
94 |
+
gdf,
|
95 |
+
style_function=lambda feature: {
|
96 |
+
"fillColor": colormap(feature["properties"][column]),
|
97 |
+
"color": "black",
|
98 |
+
"weight": 1,
|
99 |
+
"fillOpacity": 0.7,
|
100 |
+
},
|
101 |
+
highlight_function=lambda feature: {
|
102 |
+
"fillColor": "#ffaf00",
|
103 |
+
"color": "green",
|
104 |
+
"weight": 3,
|
105 |
+
"fillOpacity": 0.9,
|
106 |
+
},
|
107 |
+
tooltip=folium.features.GeoJsonTooltip(
|
108 |
+
fields=["CD_SETOR", column, "AREA_KM2"],
|
109 |
+
aliases=[
|
110 |
+
"Setor Censitário:",
|
111 |
+
f"{caption}:",
|
112 |
+
"Área (km²):",
|
113 |
+
],
|
114 |
+
style=(
|
115 |
+
"background-color: white; color: #333333;"
|
116 |
+
"font-family: calibri; font-size: 12px;"
|
117 |
+
"padding: 10px;"
|
118 |
+
),
|
119 |
+
),
|
120 |
+
).add_to(m)
|
121 |
+
colormap.add_to(m)
|
122 |
+
|
123 |
+
elif map_type == "Heatmap":
|
124 |
+
heat_data = [
|
125 |
+
[
|
126 |
+
row["geometry"].centroid.y,
|
127 |
+
row["geometry"].centroid.x,
|
128 |
+
row["POP"],
|
129 |
+
]
|
130 |
+
for idx, row in gdf.iterrows()
|
131 |
+
]
|
132 |
+
HeatMap(heat_data).add_to(m)
|
133 |
+
folium.Marker(
|
134 |
+
[lat, long],
|
135 |
+
popup="UBS Flamengo",
|
136 |
+
tooltip="UBS Flamengo",
|
137 |
+
icon=folium.Icon(color="red", icon="info-sign"),
|
138 |
+
).add_to(m)
|
139 |
+
|
140 |
+
STYLE_STATEMENT = (
|
141 |
+
"<style>.leaflet-control-layers"
|
142 |
+
"{ position: fixed; top: 10px; left: 50px; } </style>"
|
143 |
+
)
|
144 |
+
m.get_root().html.add_child(folium.Element(STYLE_STATEMENT))
|
145 |
+
folium_static(m)
|
146 |
+
|
147 |
+
with col2:
|
148 |
+
fig = px.bar(
|
149 |
+
gdf,
|
150 |
+
x="CD_SETOR",
|
151 |
+
y="POP",
|
152 |
+
title="Distribuição da População por Setor Censitário",
|
153 |
+
color="POP",
|
154 |
+
color_continuous_scale=px.colors.sequential.Viridis,
|
155 |
+
)
|
156 |
+
st.plotly_chart(fig)
|
157 |
+
|
158 |
+
age_columns = [
|
159 |
+
"POP_0A4",
|
160 |
+
"POP_5A9",
|
161 |
+
"POP_10A14",
|
162 |
+
"POP_15A19",
|
163 |
+
"POP_20A24",
|
164 |
+
"POP_25A29",
|
165 |
+
"POP_30A34",
|
166 |
+
"POP_35A39",
|
167 |
+
"POP_40A44",
|
168 |
+
"POP_45A49",
|
169 |
+
"POP_50A54",
|
170 |
+
"POP_55A59",
|
171 |
+
"POP_60A64",
|
172 |
+
"POP_65A69",
|
173 |
+
"POP_70A74",
|
174 |
+
"POP_75A79",
|
175 |
+
"POP_80A84",
|
176 |
+
"POP_85A89",
|
177 |
+
"POP_90A94",
|
178 |
+
"POP_95A99",
|
179 |
+
"POP_100OUMAIS",
|
180 |
+
]
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
add_vertical_space(10)
|
185 |
+
|
186 |
+
|
187 |
st.write('----')
|