Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,34 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer,
|
3 |
-
import
|
4 |
|
5 |
-
#
|
|
|
|
|
|
|
6 |
model_name = "microsoft/Phi-3.5-mini-instruct"
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
|
9 |
-
#
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Simple HTML template for the website
|
13 |
simple_website_template = """
|
@@ -41,22 +62,21 @@ simple_website_template = """
|
|
41 |
|
42 |
# Function to generate personalized content using Phi-3.5-mini-instruct
|
43 |
def personalize_website_llm(persona_text):
|
44 |
-
#
|
45 |
-
|
|
|
|
|
|
|
46 |
|
47 |
-
#
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
# Run the ONNX model
|
51 |
-
ort_inputs = {session.get_inputs()[0].name: inputs["input_ids"]}
|
52 |
-
ort_outs = session.run(None, ort_inputs)
|
53 |
-
|
54 |
-
# Decode the output
|
55 |
-
generated_text = tokenizer.decode(ort_outs[0][0], skip_special_tokens=True)
|
56 |
-
|
57 |
-
# Split the response into a title and content
|
58 |
-
title, content = generated_text.split('\n', 1)
|
59 |
-
|
60 |
# Set the title color and font size based on simple heuristics
|
61 |
title_color = "#333"
|
62 |
font_size = 16
|
@@ -73,8 +93,8 @@ def personalize_website_llm(persona_text):
|
|
73 |
personalized_website = simple_website_template.format(
|
74 |
title_color=title_color,
|
75 |
font_size=font_size,
|
76 |
-
title=title
|
77 |
-
content=content
|
78 |
)
|
79 |
|
80 |
return personalized_website
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
+
import torch
|
4 |
|
5 |
+
# Set the random seed for reproducibility
|
6 |
+
torch.random.manual_seed(0)
|
7 |
+
|
8 |
+
# Load the model and tokenizer
|
9 |
model_name = "microsoft/Phi-3.5-mini-instruct"
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
model_name,
|
12 |
+
device_map="auto",
|
13 |
+
torch_dtype="auto",
|
14 |
+
trust_remote_code=True
|
15 |
+
)
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
|
18 |
+
# Set up the pipeline
|
19 |
+
pipe = pipeline(
|
20 |
+
"text-generation",
|
21 |
+
model=model,
|
22 |
+
tokenizer=tokenizer,
|
23 |
+
)
|
24 |
+
|
25 |
+
# Define the generation arguments
|
26 |
+
generation_args = {
|
27 |
+
"max_new_tokens": 150,
|
28 |
+
"return_full_text": False,
|
29 |
+
"temperature": 0.7,
|
30 |
+
"do_sample": False,
|
31 |
+
}
|
32 |
|
33 |
# Simple HTML template for the website
|
34 |
simple_website_template = """
|
|
|
62 |
|
63 |
# Function to generate personalized content using Phi-3.5-mini-instruct
|
64 |
def personalize_website_llm(persona_text):
|
65 |
+
# Construct the conversation history
|
66 |
+
messages = [
|
67 |
+
{"role": "system", "content": "You are a helpful AI assistant that personalizes content for websites."},
|
68 |
+
{"role": "user", "content": f"Persona: {persona_text}. Generate a personalized website content including a title and a paragraph."},
|
69 |
+
]
|
70 |
|
71 |
+
# Generate content using the pipeline
|
72 |
+
output = pipe(messages, **generation_args)
|
73 |
+
generated_text = output[0]['generated_text'].strip()
|
74 |
+
|
75 |
+
# Simple heuristic to split title and content
|
76 |
+
lines = generated_text.split('\n')
|
77 |
+
title = lines[0]
|
78 |
+
content = "\n".join(lines[1:])
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
# Set the title color and font size based on simple heuristics
|
81 |
title_color = "#333"
|
82 |
font_size = 16
|
|
|
93 |
personalized_website = simple_website_template.format(
|
94 |
title_color=title_color,
|
95 |
font_size=font_size,
|
96 |
+
title=title,
|
97 |
+
content=content
|
98 |
)
|
99 |
|
100 |
return personalized_website
|