Spaces:
Runtime error
Runtime error
File size: 3,855 Bytes
a861406 717c8fd 347714e a861406 717c8fd a861406 5c823d7 717c8fd 5c823d7 717c8fd 5c823d7 717c8fd 5c823d7 717c8fd 5c823d7 717c8fd 5c823d7 717c8fd 5c823d7 a861406 5c823d7 a861406 5c823d7 a861406 5c823d7 a861406 5c823d7 a861406 717c8fd a861406 5c823d7 a861406 5c823d7 a861406 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import torch
import gradio as gr
from transformers import AutoProcessor, AutoModel
from pathlib import Path
import numpy as np
from decord import VideoReader
import imageio
FRAME_SAMPLING_RATE = 4
DEFAULT_MODEL = "microsoft/xclip-base-patch16-zero-shot"
processor = AutoProcessor.from_pretrained(DEFAULT_MODEL)
model = AutoModel.from_pretrained(DEFAULT_MODEL)
ROOM_TYPES = (
"bathroom,sauna,living room, bedroom,kitchen,toilet,hallway,dressing,attic,basement,home office,garage"
)
examples = [
[
"movies/bathroom.mp4",
ROOM_TYPES,
],
[
"movies/bedroom.mp4",
ROOM_TYPES,
],
[
"movies/dressing.mp4",
ROOM_TYPES,
],
[
"movies/home-office.mp4",
ROOM_TYPES,
],
[
"movies/kitchen.mp4",
ROOM_TYPES,
],
[
"movies/living-room.mp4",
ROOM_TYPES,
],
[
"movies/toilet.mp4",
ROOM_TYPES,
],
]
def sample_frames_from_video_file(
file_path: str, num_frames: int = 16, frame_sampling_rate=1
):
videoreader = VideoReader(file_path)
videoreader.seek(0)
# sample frames
start_idx = 0
end_idx = num_frames * frame_sampling_rate - 1
indices = np.linspace(start_idx, end_idx, num=num_frames, dtype=np.int64)
frames = videoreader.get_batch(indices).asnumpy()
return frames
def get_num_total_frames(file_path: str):
videoreader = VideoReader(file_path)
videoreader.seek(0)
return len(videoreader)
def select_model(model_name):
global processor, model
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
def get_frame_sampling_rate(video_path, num_model_input_frames):
# rearrange sampling rate based on video length and model input length
num_total_frames = get_num_total_frames(video_path)
if num_total_frames < FRAME_SAMPLING_RATE * num_model_input_frames:
frame_sampling_rate = num_total_frames // num_model_input_frames
else:
frame_sampling_rate = FRAME_SAMPLING_RATE
return frame_sampling_rate
def predict(video_path, labels_text):
labels = labels_text.split(",")
num_model_input_frames = model.config.vision_config.num_frames
frame_sampling_rate = get_frame_sampling_rate(video_path, num_model_input_frames)
frames = sample_frames_from_video_file(
video_path, num_model_input_frames, frame_sampling_rate
)
inputs = processor(
text=labels, videos=list(frames), return_tensors="pt", padding=True
)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
probs = outputs.logits_per_video[0].softmax(dim=-1).cpu().numpy()
label_to_prob = {}
for ind, label in enumerate(labels):
label_to_prob[label] = float(probs[ind])
# return label_to_prob, gif_path
return label_to_prob
app = gr.Blocks()
with app:
gr.Markdown("# **<p align='center'>Classification of Rooms</p>**")
gr.Markdown(
"#### **<p align='center'>Upload a video (mp4) of a room and provide a list of type of rooms the model should select from.</p>**"
)
with gr.Row():
with gr.Column():
video_file = gr.Video(label="Video File:", show_label=True)
local_video_labels_text = gr.Textbox(value=ROOM_TYPES,label="Room Types", show_label=True)
submit_button = gr.Button(value="Predict")
with gr.Column():
predictions = gr.Label(label="Predictions:", show_label=True)
gr.Markdown("**Examples:**")
gr.Examples(
examples,
[video_file, local_video_labels_text],
predictions,
fn=predict,
cache_examples=True,
)
submit_button.click(
predict,
inputs=[video_file, local_video_labels_text],
outputs=predictions,
)
app.launch()
|