Spaces:
Runtime error
Runtime error
vincentclaes
commited on
Commit
·
4161807
1
Parent(s):
a59370d
format code
Browse files- app.py +22 -7
- scrape_website.py +4 -14
app.py
CHANGED
@@ -1,8 +1,14 @@
|
|
|
|
1 |
import torch
|
2 |
-
from peft import PeftModel
|
3 |
import transformers
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
5 |
from scrape_website import process_webpage
|
|
|
6 |
assert (
|
7 |
"LlamaTokenizer" in transformers._import_structure["models.llama"]
|
8 |
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
|
@@ -19,6 +25,7 @@ else:
|
|
19 |
device = "cpu"
|
20 |
|
21 |
try:
|
|
|
22 |
if torch.backends.mps.is_available():
|
23 |
device = "mps"
|
24 |
except:
|
@@ -71,6 +78,7 @@ def generate_prompt(instruction, input=None):
|
|
71 |
{instruction}
|
72 |
### Response:"""
|
73 |
|
|
|
74 |
if device != "cpu":
|
75 |
model.half()
|
76 |
model.eval()
|
@@ -122,7 +130,9 @@ g = gr.Interface(
|
|
122 |
gr.components.Textbox(
|
123 |
lines=2, label="FAQ", placeholder="Ask me anything about this website?"
|
124 |
),
|
125 |
-
gr.components.Textbox(
|
|
|
|
|
126 |
# gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
|
127 |
# gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
|
128 |
# gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
|
@@ -139,11 +149,16 @@ g = gr.Interface(
|
|
139 |
],
|
140 |
title="FAQ A Website",
|
141 |
examples=[
|
142 |
-
[
|
|
|
|
|
|
|
143 |
["What's the name of the founder?", "https://www.meet-drift.ai/about"],
|
144 |
-
[
|
145 |
-
|
146 |
-
|
|
|
|
|
147 |
)
|
148 |
g.queue(concurrency_count=1)
|
149 |
g.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
import torch
|
|
|
3 |
import transformers
|
4 |
+
|
5 |
+
# https://github.com/huggingface/peft
|
6 |
+
# Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models (PLMs)
|
7 |
+
# to various downstream applications without fine-tuning all the model's parameters.
|
8 |
+
from peft import PeftModel
|
9 |
+
|
10 |
from scrape_website import process_webpage
|
11 |
+
|
12 |
assert (
|
13 |
"LlamaTokenizer" in transformers._import_structure["models.llama"]
|
14 |
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
|
|
|
25 |
device = "cpu"
|
26 |
|
27 |
try:
|
28 |
+
# mps device enables high-performance training on GPU for MacOS devices with Metal programming framework.
|
29 |
if torch.backends.mps.is_available():
|
30 |
device = "mps"
|
31 |
except:
|
|
|
78 |
{instruction}
|
79 |
### Response:"""
|
80 |
|
81 |
+
|
82 |
if device != "cpu":
|
83 |
model.half()
|
84 |
model.eval()
|
|
|
130 |
gr.components.Textbox(
|
131 |
lines=2, label="FAQ", placeholder="Ask me anything about this website?"
|
132 |
),
|
133 |
+
gr.components.Textbox(
|
134 |
+
lines=1, label="Website URL", placeholder="https://www.meet-drift.ai/"
|
135 |
+
),
|
136 |
# gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
|
137 |
# gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
|
138 |
# gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
|
|
|
149 |
],
|
150 |
title="FAQ A Website",
|
151 |
examples=[
|
152 |
+
[
|
153 |
+
"Can you list the capabilities this company has in bullet points?",
|
154 |
+
"https://www.meet-drift.ai/",
|
155 |
+
],
|
156 |
["What's the name of the founder?", "https://www.meet-drift.ai/about"],
|
157 |
+
[
|
158 |
+
"in 1 word what's the service the company is providing?",
|
159 |
+
"https://www.meet-drift.ai/",
|
160 |
+
],
|
161 |
+
],
|
162 |
)
|
163 |
g.queue(concurrency_count=1)
|
164 |
g.launch()
|
scrape_website.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
import requests
|
2 |
from bs4 import BeautifulSoup
|
3 |
|
4 |
-
TOKEN_CUT_OFF = 2500
|
5 |
|
6 |
-
def process_webpage(url:str):
|
7 |
# A set to keep track of visited pages
|
8 |
visited_pages = set()
|
9 |
|
@@ -36,9 +35,6 @@ def process_webpage(url:str):
|
|
36 |
|
37 |
text_list.append(text_content)
|
38 |
|
39 |
-
# Get the text content of the landing page
|
40 |
-
# get_child_pages(url)
|
41 |
-
|
42 |
# Make a GET request to the page and get the HTML content
|
43 |
response = requests.get(url)
|
44 |
html_content = response.content
|
@@ -52,15 +48,9 @@ def process_webpage(url:str):
|
|
52 |
for element in soup.find_all(tag):
|
53 |
text_content += element.get_text() + " "
|
54 |
|
55 |
-
# # make main page as first item
|
56 |
-
# text_list.reverse()
|
57 |
-
# text_list_cut_off = text_list[:TOKEN_CUT_OFF]
|
58 |
-
# page_content = "\n".join(text_list_cut_off)
|
59 |
-
# # Print the text content of the landing page and all child pages
|
60 |
-
# print(page_content)
|
61 |
-
# return page_content
|
62 |
print(text_content)
|
63 |
return text_content
|
64 |
|
65 |
-
|
66 |
-
|
|
|
|
1 |
import requests
|
2 |
from bs4 import BeautifulSoup
|
3 |
|
|
|
4 |
|
5 |
+
def process_webpage(url: str):
|
6 |
# A set to keep track of visited pages
|
7 |
visited_pages = set()
|
8 |
|
|
|
35 |
|
36 |
text_list.append(text_content)
|
37 |
|
|
|
|
|
|
|
38 |
# Make a GET request to the page and get the HTML content
|
39 |
response = requests.get(url)
|
40 |
html_content = response.content
|
|
|
48 |
for element in soup.find_all(tag):
|
49 |
text_content += element.get_text() + " "
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
print(text_content)
|
52 |
return text_content
|
53 |
|
54 |
+
|
55 |
+
if __name__ == "__main__":
|
56 |
+
process_webpage(url="https://www.meet-drift.ai/")
|