File size: 790 Bytes
611aebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import os

import gradio as gr
import weaviate

collection_name = "Chunk"


def predict(input_text):
    client = weaviate.Client(
        url=os.environ["WEAVIATE_URL"],
        auth_client_secret=weaviate.AuthApiKey(api_key=os.environ["WEAVIATE_API_KEY"]),
        additional_headers={
            "X-OpenAI-Api-Key": os.environ["OPENAI_API_KEY"]
        }
    )

    return (
        client.query
        .get(class_name=collection_name, properties=["text"])
        .with_near_text({"concepts": input_text})
        .with_limit(1)
        .with_generate(single_prompt="{text}")
        .do()
    )

iface = gr.Interface(
    fn=predict,  # the function to wrap
    inputs="text",  # the input type
    outputs="text",  # the output type
)

if __name__ == "__main__":
    iface.launch()