Spaces:
Runtime error
Runtime error
FilipinosRich
commited on
Commit
·
5f111f9
1
Parent(s):
e481d34
Ran black
Browse files
test.py
CHANGED
@@ -12,31 +12,32 @@ from langchain.chains import LLMChain, SequentialChain
|
|
12 |
llm = ChatOpenAI(temperature=0.0, openai_api_key=os.environ["OPENAI"])
|
13 |
|
14 |
|
15 |
-
|
16 |
-
|
17 |
def generate_skills() -> list:
|
18 |
-
|
19 |
template_generate_skills = """
|
20 |
Can you generate me a list of skills you would need to be successfully employed in a Data Scientist role?
|
21 |
Return 10 skills as a JSON list.
|
22 |
"""
|
23 |
|
24 |
-
prompt_generate_skills = ChatPromptTemplate.from_template(
|
25 |
-
|
|
|
|
|
|
|
|
|
26 |
|
27 |
generate_skills_chain = SequentialChain(
|
28 |
chains=[role_skills],
|
29 |
input_variables=[],
|
30 |
output_variables=["role_skills"],
|
31 |
-
verbose=False
|
32 |
)
|
33 |
|
34 |
result = generate_skills_chain({})
|
35 |
result_array = json.loads(result["role_skills"])["skills"]
|
36 |
return result_array
|
37 |
|
38 |
-
def generate_resume(skills: list) -> str:
|
39 |
|
|
|
40 |
template_generate_resume = """
|
41 |
Given the following list of skills as an array delimited by three backticks, generate a resume of a data scientist with 3 years of experience.
|
42 |
Make sure to include a section "skills" in the resume.
|
@@ -46,22 +47,24 @@ def generate_resume(skills: list) -> str:
|
|
46 |
```
|
47 |
"""
|
48 |
|
49 |
-
prompt_generate_resume = ChatPromptTemplate.from_template(
|
|
|
|
|
50 |
resume = LLMChain(llm=llm, prompt=prompt_generate_resume, output_key="resume")
|
51 |
|
52 |
generate_resume_chain = SequentialChain(
|
53 |
chains=[resume],
|
54 |
input_variables=["skills"],
|
55 |
output_variables=["resume"],
|
56 |
-
verbose=False
|
57 |
)
|
58 |
|
59 |
result = generate_resume_chain({"skills": skills})
|
60 |
|
61 |
return result
|
62 |
|
|
|
63 |
def retrieve_skills(resume: str) -> str:
|
64 |
-
|
65 |
template_retrieve_skills = """
|
66 |
Given the following resume delimited by three backticks, retrieve the skills this data scientist possesses.
|
67 |
Return them as a JSON list.
|
@@ -71,14 +74,16 @@ def retrieve_skills(resume: str) -> str:
|
|
71 |
```
|
72 |
"""
|
73 |
|
74 |
-
prompt_retrieve_skills = ChatPromptTemplate.from_template(
|
|
|
|
|
75 |
skills = LLMChain(llm=llm, prompt=prompt_retrieve_skills, output_key="skills")
|
76 |
|
77 |
retrieve_skills_chain = SequentialChain(
|
78 |
chains=[skills],
|
79 |
input_variables=["resume"],
|
80 |
output_variables=["skills"],
|
81 |
-
verbose=False
|
82 |
)
|
83 |
|
84 |
result = retrieve_skills_chain({"resume": resume})
|
@@ -86,10 +91,12 @@ def retrieve_skills(resume: str) -> str:
|
|
86 |
|
87 |
return result_array
|
88 |
|
89 |
-
|
|
|
90 |
intersection_list = [value for value in predicted_values if value in true_values]
|
91 |
print(intersection_list)
|
92 |
-
return len(intersection_list)/len(true_values)
|
|
|
93 |
|
94 |
if __name__ == "__main__":
|
95 |
role_skills = generate_skills()
|
@@ -107,16 +114,16 @@ if __name__ == "__main__":
|
|
107 |
# 's3',
|
108 |
# region_name='eu-west-1'
|
109 |
# )
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
# s3_uri = urlparse("s3://ausy-datalake-drift-nonprod/resume-matcher/raw/resume-dataset.csv", allow_fragments=False).geturl()
|
121 |
# resumes_list = pd.read_csv(s3_uri, header=None, encoding='utf-8')[0].tolist()
|
122 |
|
@@ -125,9 +132,9 @@ if __name__ == "__main__":
|
|
125 |
# def get_skills(resumes: str) -> list:
|
126 |
|
127 |
# template_resumes_get_skills = """
|
128 |
-
# Given the following string, delimited by <RESUMES> and </RESUMES> which contains resumes which are not properly formatted, categorize the resumes based on domain.
|
129 |
# For each domain list the skills of the resumes that are part of that domain.
|
130 |
-
|
131 |
# Create a JSON object where they keys are the domains and the values are a list containing the skills.
|
132 |
|
133 |
# Return that JSON object only.
|
@@ -155,5 +162,5 @@ if __name__ == "__main__":
|
|
155 |
# if __name__ == "__main__":
|
156 |
# resumes = get_resumes()
|
157 |
# print(resumes)
|
158 |
-
|
159 |
-
|
|
|
12 |
llm = ChatOpenAI(temperature=0.0, openai_api_key=os.environ["OPENAI"])
|
13 |
|
14 |
|
|
|
|
|
15 |
def generate_skills() -> list:
|
|
|
16 |
template_generate_skills = """
|
17 |
Can you generate me a list of skills you would need to be successfully employed in a Data Scientist role?
|
18 |
Return 10 skills as a JSON list.
|
19 |
"""
|
20 |
|
21 |
+
prompt_generate_skills = ChatPromptTemplate.from_template(
|
22 |
+
template=template_generate_skills
|
23 |
+
)
|
24 |
+
role_skills = LLMChain(
|
25 |
+
llm=llm, prompt=prompt_generate_skills, output_key="role_skills"
|
26 |
+
)
|
27 |
|
28 |
generate_skills_chain = SequentialChain(
|
29 |
chains=[role_skills],
|
30 |
input_variables=[],
|
31 |
output_variables=["role_skills"],
|
32 |
+
verbose=False,
|
33 |
)
|
34 |
|
35 |
result = generate_skills_chain({})
|
36 |
result_array = json.loads(result["role_skills"])["skills"]
|
37 |
return result_array
|
38 |
|
|
|
39 |
|
40 |
+
def generate_resume(skills: list) -> str:
|
41 |
template_generate_resume = """
|
42 |
Given the following list of skills as an array delimited by three backticks, generate a resume of a data scientist with 3 years of experience.
|
43 |
Make sure to include a section "skills" in the resume.
|
|
|
47 |
```
|
48 |
"""
|
49 |
|
50 |
+
prompt_generate_resume = ChatPromptTemplate.from_template(
|
51 |
+
template=template_generate_resume
|
52 |
+
)
|
53 |
resume = LLMChain(llm=llm, prompt=prompt_generate_resume, output_key="resume")
|
54 |
|
55 |
generate_resume_chain = SequentialChain(
|
56 |
chains=[resume],
|
57 |
input_variables=["skills"],
|
58 |
output_variables=["resume"],
|
59 |
+
verbose=False,
|
60 |
)
|
61 |
|
62 |
result = generate_resume_chain({"skills": skills})
|
63 |
|
64 |
return result
|
65 |
|
66 |
+
|
67 |
def retrieve_skills(resume: str) -> str:
|
|
|
68 |
template_retrieve_skills = """
|
69 |
Given the following resume delimited by three backticks, retrieve the skills this data scientist possesses.
|
70 |
Return them as a JSON list.
|
|
|
74 |
```
|
75 |
"""
|
76 |
|
77 |
+
prompt_retrieve_skills = ChatPromptTemplate.from_template(
|
78 |
+
template=template_retrieve_skills
|
79 |
+
)
|
80 |
skills = LLMChain(llm=llm, prompt=prompt_retrieve_skills, output_key="skills")
|
81 |
|
82 |
retrieve_skills_chain = SequentialChain(
|
83 |
chains=[skills],
|
84 |
input_variables=["resume"],
|
85 |
output_variables=["skills"],
|
86 |
+
verbose=False,
|
87 |
)
|
88 |
|
89 |
result = retrieve_skills_chain({"resume": resume})
|
|
|
91 |
|
92 |
return result_array
|
93 |
|
94 |
+
|
95 |
+
def get_score(true_values: list, predicted_values: list) -> float:
|
96 |
intersection_list = [value for value in predicted_values if value in true_values]
|
97 |
print(intersection_list)
|
98 |
+
return len(intersection_list) / len(true_values)
|
99 |
+
|
100 |
|
101 |
if __name__ == "__main__":
|
102 |
role_skills = generate_skills()
|
|
|
114 |
# 's3',
|
115 |
# region_name='eu-west-1'
|
116 |
# )
|
117 |
+
|
118 |
+
# resumes = s3.get_object(Bucket='ausy-datalake-drift-nonprod', Key='resume-matcher/raw/resume-dataset.csv')
|
119 |
+
|
120 |
+
# resumes_list = resumes['Body'].read().decode('utf-8').splitlines()
|
121 |
+
# resumes_list = resumes['Body'].read().decode('utf-8').splitlines()
|
122 |
+
# resumes_list = str(resumes_list).replace('. ', '.\n')
|
123 |
+
# resumes_list = str(resumes_list).replace('â¢', '\n - ')
|
124 |
+
# resumes_list = [s.replace('. ', '.\n') for s in resumes_list]
|
125 |
+
# resumes_list = [s.replace('â¢', '\n - ') for s in resumes_list]
|
126 |
+
# resume_string =''.join(resumes_list)
|
127 |
# s3_uri = urlparse("s3://ausy-datalake-drift-nonprod/resume-matcher/raw/resume-dataset.csv", allow_fragments=False).geturl()
|
128 |
# resumes_list = pd.read_csv(s3_uri, header=None, encoding='utf-8')[0].tolist()
|
129 |
|
|
|
132 |
# def get_skills(resumes: str) -> list:
|
133 |
|
134 |
# template_resumes_get_skills = """
|
135 |
+
# Given the following string, delimited by <RESUMES> and </RESUMES> which contains resumes which are not properly formatted, categorize the resumes based on domain.
|
136 |
# For each domain list the skills of the resumes that are part of that domain.
|
137 |
+
|
138 |
# Create a JSON object where they keys are the domains and the values are a list containing the skills.
|
139 |
|
140 |
# Return that JSON object only.
|
|
|
162 |
# if __name__ == "__main__":
|
163 |
# resumes = get_resumes()
|
164 |
# print(resumes)
|
165 |
+
# for x in resumes:
|
166 |
+
# get_skills(x)
|