drkareemkamal commited on
Commit
2b39b64
·
verified ·
1 Parent(s): b327853

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -9
app.py CHANGED
@@ -25,14 +25,23 @@ model = tf.keras.models.load_model(
25
 
26
  # 3.prediction function (predict())
27
 
28
- def load_and_prep_imgg(filename, img_shape=224, scale=True):
29
  if not isinstance(filename, str):
30
  raise ValueError("The filename must be a string representing the file path.")
31
- img = tf.io.read_file(filename)
32
- img = tf.io.decode_image(img, channels=3)
33
- img = tf.image.resize(img, size=[img_shape, img_shape])
 
 
 
 
 
 
 
 
 
34
  if scale:
35
- return img / 255
36
  else:
37
  return img
38
 
@@ -57,10 +66,9 @@ def predict(img) -> Tuple[Dict,float] :
57
 
58
  ### 4. Gradio app - our Gradio interface + launch command
59
 
60
- title = 'FoodVision Big'
61
- description = 'Feature Extraxtion VGG model to classifiy Macular Diseases by OCT '
62
- article = 'created at Tensorflow Model Deployment'
63
-
64
  # Create example list
65
 
66
  example_list = [['examples/'+ example] for example in os.listdir('examples')]
 
25
 
26
  # 3.prediction function (predict())
27
 
28
+ def load_and_prep_imgg(img : Image.Image, img_shape=224, scale=True):
29
  if not isinstance(filename, str):
30
  raise ValueError("The filename must be a string representing the file path.")
31
+ # img = tf.io.read_file(filename)
32
+ # img = tf.io.decode_image(img, channels=3)
33
+ # img = tf.image.resize(img, size=[img_shape, img_shape])
34
+ # if scale:
35
+ # return img / 255
36
+ # else:
37
+ # return img
38
+ img = img.resize((img_shape, img_shape))
39
+ img = np.array(img)
40
+ if img.shape[-1] == 1: # If the image is grayscale
41
+ img = np.stack([img] * 3, axis=-1)
42
+ img = tf.convert_to_tensor(img, dtype=tf.float32)
43
  if scale:
44
+ return img / 255.0
45
  else:
46
  return img
47
 
 
66
 
67
  ### 4. Gradio app - our Gradio interface + launch command
68
 
69
+ title = 'Macular Disease Classification'
70
+ description = 'Feature Extraction VGG model to classify Macular Diseases by OCT'
71
+ article = 'Created with TensorFlow Model Deployment'
 
72
  # Create example list
73
 
74
  example_list = [['examples/'+ example] for example in os.listdir('examples')]