drkareemkamal commited on
Commit
3467094
·
verified ·
1 Parent(s): df3f4fb

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -78
app.py DELETED
@@ -1,78 +0,0 @@
1
- import gradio as gr
2
-
3
- from timeit import default_timer as timer
4
- from typing import Tuple , Dict
5
- import tensorflow as tf
6
- import numpy as np
7
-
8
- from PIL import Image
9
- import os
10
-
11
- # 1.Import and class names setup
12
- class_names = ['CNV','DME','DRUSEN','NORMAL']
13
-
14
-
15
- # 2. Model annd transforms prepration
16
- # model = tf.keras.models.load_model(
17
- # 'oct_classification_final_model_lg.keras', custom_objects=None, compile=True, safe_mode=True
18
- # )
19
- model = tf.keras.models.load_model(
20
- 'oct_classification_final_model_lg.keras', custom_objects=None, compile=True, safe_mode=False
21
- )
22
-
23
-
24
- # Load save weights
25
-
26
- # 3.prediction function (predict())
27
-
28
- def load_and_prep_imgg(filename, img_shape=224, scale=True):
29
- img = tf.io.read_file(filename)
30
- img = tf.io.decode_image(img, channels=3)
31
- img = tf.image.resize(img, size=[img_shape, img_shape])
32
- if scale:
33
- return img / 255
34
- else:
35
- return img
36
-
37
- def predict(img) -> Tuple[Dict,float] :
38
-
39
- start_time = timer()
40
-
41
- image = load_and_prep_imgg(img)
42
- #image = Image.open(image)
43
-
44
- pred_img = model.predict(tf.expand_dims(image, axis=0))
45
- pred_class = class_names[pred_img.argmax()]
46
- st.write(f"Predicted brain tumor is: {pred_class} with probability: {pred_img.max():.2f}")
47
-
48
-
49
-
50
-
51
- end_time = timer()
52
- pred_time = round(end_time - start_time , 4)
53
-
54
- return pred_class , pred_time
55
-
56
- ### 4. Gradio app - our Gradio interface + launch command
57
-
58
- title = 'FoodVision Big'
59
- description = 'Feature Extraxtion VGG model to classifiy Macular Diseases by OCT '
60
- article = 'created at Tensorflow Model Deployment'
61
-
62
- # Create example list
63
-
64
- example_list = [['examples/'+ example] for example in os.listdir('examples')]
65
- example_list
66
-
67
- # create a gradio demo
68
- demo = gr.Interface(fn=predict ,
69
- inputs=gr.Image(type='pil'),
70
- outputs=[gr.Label(num_top_classes = 3 , label= 'prediction'),
71
- gr.Number(label= 'Prediction time (s)')],
72
- examples = example_list,
73
- title = title,
74
- description = description,
75
- article= article)
76
-
77
- # Launch the demo
78
- demo.launch(debug= False)