drkareemkamal commited on
Commit
982f37c
·
verified ·
1 Parent(s): b464a80

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -42
app.py DELETED
@@ -1,42 +0,0 @@
1
- import streamlit as st
2
- import tensorflow as tf
3
- from PIL import Image
4
- import os
5
-
6
- model = tf.keras.models.load_model('Brain_tumor/')
7
- st.write('Model is loaded successfully')
8
-
9
- TEMP_DIR = 'temp'
10
- if not os.path.exists(TEMP_DIR):
11
- os.makedirs(TEMP_DIR)
12
-
13
- class_names = ['glioma', 'meningioma', 'notumor', 'pituitary']
14
-
15
- def load_and_prep_imgg(filename ,img_shape=229, scale=True):
16
-
17
- img = tf.io.read_file(filename)
18
-
19
- img = tf.io.decode_image(img)
20
-
21
- img = tf.image.resize(img,size=[img_shape,img_shape])
22
-
23
- if scale :
24
- return img/255
25
- else :
26
- return img
27
-
28
- st.title('Brain Tumor Classidfication Predition using Xception ImageNet ')
29
-
30
- uploaded_file = st.sidebar.file_uploader('Upload your Image', type=['jpg'])
31
-
32
- if uploaded_file:
33
-
34
- file_path = os.path.join(TEMP_DIR, uploaded_file.name)
35
- img = load_and_prep_imgg(file_path,scale=True)
36
- imgg = Image.open(file_path)
37
- st.image(img,caption ="Predicted brain tumor is : {pred_class} with probs : {pred_img:max():.2f}" )
38
-
39
- pred_img = model.predict(tf.expand_dims(img,axis=0))
40
- pred_class = class_names[pred_img.argmax()]
41
- st.write(f"Predicted brain tumor is : {pred_class} with probs : {pred_img:max():.2f}")
42
-