Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
from PIL import Image
|
4 |
+
import os
|
5 |
+
|
6 |
+
model = tf.keras.models.load_model('Brain_tumor/')
|
7 |
+
st.write('Model is loaded successfully')
|
8 |
+
|
9 |
+
TEMP_DIR = 'temp'
|
10 |
+
if not os.path.exists(TEMP_DIR):
|
11 |
+
os.makedirs(TEMP_DIR)
|
12 |
+
|
13 |
+
class_names = ['glioma', 'meningioma', 'notumor', 'pituitary']
|
14 |
+
|
15 |
+
def load_and_prep_imgg(filename, img_shape=229, scale=True):
|
16 |
+
img = tf.io.read_file(filename)
|
17 |
+
img = tf.io.decode_image(img)
|
18 |
+
img = tf.image.resize(img, size=[img_shape, img_shape])
|
19 |
+
if scale:
|
20 |
+
return img / 255
|
21 |
+
else:
|
22 |
+
return img
|
23 |
+
|
24 |
+
st.title('Brain Tumor Classification Prediction using Xception ImageNet')
|
25 |
+
|
26 |
+
uploaded_file = st.sidebar.file_uploader('Upload your Image', type=['jpg'])
|
27 |
+
|
28 |
+
if uploaded_file:
|
29 |
+
file_path = os.path.join(TEMP_DIR, uploaded_file.name)
|
30 |
+
|
31 |
+
# Save the uploaded file to the temporary directory
|
32 |
+
with open(file_path, "wb") as f:
|
33 |
+
f.write(uploaded_file.getbuffer())
|
34 |
+
|
35 |
+
img = load_and_prep_imgg(file_path, scale=True)
|
36 |
+
imgg = Image.open(file_path)
|
37 |
+
st.image(imgg, caption="Uploaded Image")
|
38 |
+
|
39 |
+
pred_img = model.predict(tf.expand_dims(img, axis=0))
|
40 |
+
pred_class = class_names[pred_img.argmax()]
|
41 |
+
st.write(f"Predicted brain tumor is: {pred_class} with probability: {pred_img.max():.2f}")
|