import streamlit as st import tensorflow as tf from PIL import Image import os model = tf.keras.models.load_model('Brain_tumor/') st.write('Model is loaded successfully') TEMP_DIR = 'temp' if not os.path.exists(TEMP_DIR): os.makedirs(TEMP_DIR) class_names = ['glioma', 'meningioma', 'notumor', 'pituitary'] def load_and_prep_imgg(filename ,img_shape=229, scale=True): img = tf.io.read_file(filename) img = tf.io.decode_image(img) img = tf.image.resize(img,size=[img_shape,img_shape]) if scale : return img/255 else : return img st.title('Brain Tumor Classidfication Predition using Xception ImageNet ') uploaded_file = st.sidebar.file_uploader('Upload your Image', type=['jpg']) if uploaded_file: #file_path = os.path.join(uploaded_file.name) img = load_and_prep_imgg(uploaded_file.name,scale=True) imgg = Image.open(uploaded_file.name) st.image(img,caption ="Predicted brain tumor is : {pred_class} with probs : {pred_img:max():.2f}" ) pred_img = model.predict(tf.expand_dims(img,axis=0)) pred_class = class_names[pred_img.argmax()] st.write(f"Predicted brain tumor is : {pred_class} with probs : {pred_img:max():.2f}")