drkareemkamal commited on
Commit
b208046
·
verified ·
1 Parent(s): 166d466

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -106
app.py CHANGED
@@ -1,106 +0,0 @@
1
- import streamlit as st
2
- from streamlit_chat import message
3
- import tempfile
4
- #from langchain_community.documentloader.csv_loader import CSVLoader
5
- from langchain_community.document_loaders.csv_loader import CSVLoader
6
- from langchain_community.embeddings import HuggingFaceEmbeddings
7
- #from langchain_community.embeddings import HuggingFaceBgeEmbeddings
8
- from langchain.text_splitter import RecursiveCharacterTextSplitter
9
- from langchain_community.vectorstores import FAISS
10
- #from langchain_community.llms import CTransformers
11
- from langchain_community.llms.ctransformers import CTransformers
12
-
13
- from langchain.chains.conversational_retrieval.base import ConversationalRetrievalChain
14
-
15
- #from langchain.chains.conversational_retrieval.base import ConversationalRetreievalChain
16
-
17
-
18
- DB_FAISS_PATH = 'vectorstore/db_faiss'
19
-
20
- def load_llm():
21
- # load model from hugging face repo
22
- llm = CTransformers(
23
- model = 'TheBloke/Llama-2-7B-Chat-GGML',
24
- model_type = 'llma',
25
- max_new_token = 512,
26
- temperature = 0.5
27
- )
28
- return llm
29
-
30
- st.title("Chat with CSV using Llma 2")
31
- st.markdown("<h1 style='text-align: center; color: blue;'>Chat with your PDF 📄 </h1>", unsafe_allow_html=True)
32
- st.markdown("<h3 style='text-align: center; color: grey;'>Built by <a href='https://github.com/DrKareemKAmal'>MindSparks ❤️ </a></h3>", unsafe_allow_html=True)
33
-
34
- uploaded_file = st.sidebar.file_uploader('Upload your data', type=['csv'])
35
-
36
- if uploaded_file:
37
- with tempfile.NamedTemporaryFile(delete=False)as temp_file :
38
- temp_file.write(uploaded_file.getvalue())
39
- tempfile_path = temp_file.name
40
-
41
- loader = CSVLoader(file_path = tempfile_path, encoding = 'utf-8',
42
- csv_args = {'delimiter': ','} )
43
- data = loader.load()
44
- #st.json(data)
45
-
46
- text_splitter = RecursiveCharacterTextSplitter(chunk_size = 500 , chunk_overlap = 20)
47
- text_chunks = text_splitter.split_documents(data)
48
- st.write (f"Total text chunks : {len(text_chunks)}")
49
-
50
- embeddings = HuggingFaceEmbeddings(
51
- model = 'sentence-transformers/all-MiniLM-L6-v2',
52
- model_kwargs = {'device': 'cpu'}
53
- )
54
-
55
-
56
- db = FAISS.from_documents(text_chunks, embeddings)
57
- db.save_local (DB_FAISS_PATH)
58
- llm = load_llm()
59
-
60
- chain = ConversationalRetrievalChain.from_llm(llm= llm , retriever = db.as_retriever())
61
-
62
- def conversational_chat(query):
63
- result = chain({"quetion": query ,
64
- "chat_history": st.session_state['history']})
65
- st.session_state['history'].append((query , result['answer']))
66
- return result['answer']
67
-
68
- if 'history' not in st.session_state :
69
- st.session_state['history'] = []
70
-
71
- if 'generated' not in st.session_state :
72
- st.session_state['generated'] = ['Hello, Ask me anything about ' + uploaded_file.name]
73
-
74
- if 'past' not in st.session_state :
75
- st.session_state['past'] = ['Hey !']
76
-
77
- # Container for the chat history
78
- response_container = st.container()
79
- container = st.container()
80
-
81
- with container :
82
- with st.form(key = 'my_form',
83
- clear_on_submit=True):
84
- user_input = st.text_input('Query:', placeholder= "Talk to youur CSV Data here ")
85
- submit_button = st.from_submit_button(label = 'chat')
86
-
87
- if submit_button and user_input :
88
- output = conversational_chat(user_input)
89
-
90
- st.session_state['past'].append(user_input)
91
- st.session_state['generated'].append(output)
92
-
93
- if st.session_state['generated'] :
94
- with response_container:
95
- for i in range(len(st.session_state['generated'])):
96
- message(st.session_state['past'][i], is_user = True , key=str(i) + '_user',
97
- avatar_style='big-smile')
98
- message(st.session_state['generated'][i], key = str(i), avatar_style='thumb')
99
-
100
-
101
-
102
-
103
-
104
-
105
-
106
-