drkareemkamal commited on
Commit
c53c76a
·
verified ·
1 Parent(s): 821c158

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -102
app.py DELETED
@@ -1,102 +0,0 @@
1
- import streamlit as st
2
- from streamlit_chat import message
3
- import tempfile
4
- #from langchain_community.documentloader.csv_loader import CSVLoader
5
- from langchain_community.document_loaders.csv_loader import CSVLoader
6
- from langchain_community.embeddings import HuggingFaceEmbeddings
7
- #from langchain_community.embeddings import HuggingFaceBgeEmbeddings
8
-
9
- from langchain_community.vectorstores import FAISS
10
- #from langchain_community.llms import CTransformers
11
- from langchain_community.llms.ctransformers import CTransformers
12
-
13
- from langchain.chains.conversational_retrieval.base import ConversationalRetrievalChain
14
-
15
- #from langchain.chains.conversational_retrieval.base import ConversationalRetreievalChain
16
-
17
-
18
- DB_FAISS_PATH = 'vectorstore/db_faiss'
19
-
20
- def load_llm():
21
- # load model from hugging face repo
22
- llm = CTransformers(
23
- model = 'TheBloke/Llama-2-7B-Chat-GGML',
24
- model_type = 'llma',
25
- max_new_token = 512,
26
- temperature = 0.5
27
- )
28
- return llm
29
-
30
- st.title("Chat with CSV using Llma 2")
31
- st.markdown("<h1 style='text-align: center; color: blue;'>Chat with your PDF 📄 </h1>", unsafe_allow_html=True)
32
- st.markdown("<h3 style='text-align: center; color: grey;'>Built by <a href='https://github.com/DrKareemKAmal'>MindSparks ❤️ </a></h3>", unsafe_allow_html=True)
33
-
34
- uploaded_file = st.sidebar.file_uploader('Upload your data', type=['csv'])
35
-
36
- if uploaded_file:
37
- with tempfile.NamedTemporaryFile(delete=False)as temp_file :
38
- tempfile.write(uploaded_file.getvalue())
39
- tempfile_path = tempfile.name
40
-
41
- loader = CSVLoader(file_path = tempfile_path, encoding = 'utf-8',
42
- csv_args = {'delimiter': ','} )
43
- data = loader.load()
44
- st.json(data)
45
-
46
- embeddings = HuggingFaceEmbeddings(
47
- model = 'all-MiniLM-L6-v2',
48
- model_kwargs = {'device': 'cpu'}
49
- )
50
-
51
-
52
- db = FAISS.from_documents(data, embeddings)
53
- db.save_local (DB_FAISS_PATH)
54
- llm = load_llm()
55
-
56
- chain = ConversationalRetrievalChain.from_llm(llm= llm , retriever = db.as_retriever())
57
-
58
- def conversational_chat(query):
59
- result = chain({"quetion": query ,
60
- "chat_history": st.session_state['history']})
61
- st.session_state['history'].append((query , result['answer']))
62
- return result['answer']
63
-
64
- if 'history' not in st.session_state :
65
- st.session_state['history'] = []
66
-
67
- if 'generated' not in st.session_state :
68
- st.session_state['generated'] = ['Hello, Ask me anything about ' + uploaded_file.name]
69
-
70
- if 'past' not in st.session_state :
71
- st.session_state['past'] = ['Hey !']
72
-
73
- # Container for the chat history
74
- response_container = st.container()
75
- container = st.container()
76
-
77
- with container :
78
- with st.form(key = 'mu_form',
79
- clear_on_submit=True):
80
- user_input = st.text_input('Query:', placeholder= "Talk to youur CSV Data here ")
81
- submit_button = st.from_submit_button(label = 'chat')
82
-
83
- if submit_button and user_input :
84
- output = conversational_chat(user_input)
85
-
86
- st.session_state['past'].append(user_input)
87
- st.session_state['generated'].append(output)
88
-
89
- if st.session_state['generated'] :
90
- with response_container:
91
- for i in range(len(st.session_state['generated'])):
92
- message(st.session_state['past'][i], is_user = True , key=str(i) + '_user',
93
- avatar_style='big-smile')
94
- message(st.session_state['generated'][i], key = str(i), avatar_style='thumb')
95
-
96
-
97
-
98
-
99
-
100
-
101
-
102
-