import streamlit as st import numpy as np import cv2 import joblib import tensorflow as tf from tensorflow.keras.applications import ( ResNet50, VGG16, EfficientNetV2B0, InceptionV3, ResNet101, DenseNet201 ) from tensorflow.keras.preprocessing import image import os # Define available models MODELS = { 'ResNet50': ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3), pooling="avg"), 'VGG16': VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3), pooling="avg"), 'EfficientNetV2B0': EfficientNetV2B0(weights='imagenet', include_top=False, input_shape=(224, 224, 3), pooling="avg"), 'InceptionV3': InceptionV3(weights='imagenet', include_top=False, input_shape=(224, 224, 3), pooling="avg"), 'ResNet101': ResNet101(weights='imagenet', include_top=False, input_shape=(224, 224, 3), pooling="avg"), 'DenseNet201': DenseNet201(weights='imagenet', include_top=False, input_shape=(224, 224, 3), pooling="avg") } # Load trained models MODEL_PATHS = {model_name: f"{model_name}_catboost.pkl" for model_name in MODELS} trained_models = {} # Load the trained models into memory for model_name, path in MODEL_PATHS.items(): if os.path.exists(path): trained_models[model_name] = joblib.load(path) # Define class names (modify based on dataset) CLASS_NAMES = ['ADI','DEB','LYM','MUC','MUS','NOR','STR','TUM'] # Update with actual labels # Streamlit UI st.title("Multi-Model Image Classifier") st.markdown("Upload an image and select which models and classes to use for prediction.") # Upload an image uploaded_file = st.file_uploader("Upload an image...", type=["jpg", "png", "jpeg"]) # Select Models selected_models = st.multiselect("Select models for prediction:", list(trained_models.keys())) # Select Classes selected_classes = st.multiselect("Select classes to predict:", CLASS_NAMES, default=CLASS_NAMES) # Function to preprocess image def preprocess_image(img_path): img = image.load_img(img_path, target_size=(224, 224)) img_array = image.img_to_array(img) / 255.0 # Normalize img_array = np.expand_dims(img_array, axis=0) return img_array # Perform prediction if uploaded_file and selected_models: # Read and preprocess the image image_np = np.array(bytearray(uploaded_file.read()), dtype=np.uint8) image_np = cv2.imdecode(image_np, cv2.IMREAD_COLOR) image_np = cv2.resize(image_np, (224, 224)) / 255.0 image_np = np.expand_dims(image_np, axis=0) # Extract Features extracted_features = {} for model_name in selected_models: extracted_features[model_name] = MODELS[model_name].predict(image_np) # Predict using each selected CatBoost model predictions = {} for model_name in selected_models: X_input = extracted_features[model_name] catboost_model = trained_models[model_name] y_pred = catboost_model.predict_proba(X_input)[0] # Get probabilities predictions[model_name] = y_pred # Display results st.subheader("Prediction Results") for model_name, y_pred in predictions.items(): st.write(f"**Model: {model_name}**") for i, class_name in enumerate(CLASS_NAMES): if class_name in selected_classes: st.write(f" - {class_name}: **{y_pred[i]:.4f}**")