File size: 9,983 Bytes
fcc36c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# import numpy as np
# import cv2
# import tritonclient.grpc as grpcclient
# import sys
# import argparse
# import os

# # Class names for the dataset
# class_names = [
#     'helm',
#     'no_helm',
#     "person"
# ]

# def get_triton_client(url: str = '104.192.4.139:8001'):
#     # try:
#     keepalive_options = grpcclient.KeepAliveOptions(
#         keepalive_time_ms=2**31 - 1,
#         keepalive_timeout_ms=20000,
#         keepalive_permit_without_calls=False,
#         http2_max_pings_without_data=2
#     )
#     triton_client = grpcclient.InferenceServerClient(
#         url=url,
#         verbose=False,
#         keepalive_options=keepalive_options)
#     # except Exception as e:
#     #     print("Channel creation failed: " + str(e))
#     #     sys.exit()
#     return triton_client

# def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
#     label = f'{class_names[class_id]}: {confidence:.2f}'
#     color = (255, 0, 0)
#     cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
#     cv2.putText(img, label, (x - 10, y - 10),
#                 cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)

# def process_frame(frame, expected_image_shape, model_name, triton_client):
#     original_image, input_image, scale = preprocess_frame(frame, expected_image_shape)
#     num_detections, detection_boxes, detection_scores, detection_classes = run_inference(
#         model_name, input_image, triton_client)

#     for index in range(num_detections[0]):
#         box = detection_boxes[index]
#         draw_bounding_box(original_image,
#                           detection_classes[index],
#                           detection_scores[index],
#                           round(box[0] * scale),
#                           round(box[1] * scale),
#                           round((box[0] + box[2]) * scale),
#                           round((box[1] + box[3]) * scale))
#     return original_image

# def preprocess_frame(frame, expected_image_shape):
#     expected_width = expected_image_shape[0]
#     expected_height = expected_image_shape[1]
#     expected_length = min(expected_height, expected_width)
#     [height, width, _] = frame.shape
#     length = max(height, width)
#     image = np.zeros((length, length, 3), np.uint8)
#     image[0:height, 0:width] = frame
#     scale = length / expected_length

#     input_image = cv2.resize(image, (expected_width, expected_height))
#     input_image = (input_image / 255.0).astype(np.float32)
#     input_image = input_image.transpose(2, 0, 1)  # Channel first
#     input_image = np.expand_dims(input_image, axis=0)
#     return frame, input_image, scale

# def run_inference(model_name: str, input_image: np.ndarray, triton_client: grpcclient.InferenceServerClient):
#     inputs = [grpcclient.InferInput('images', input_image.shape, "FP32")]
#     inputs[0].set_data_from_numpy(input_image)

#     outputs = [
#         grpcclient.InferRequestedOutput('num_detections'),
#         grpcclient.InferRequestedOutput('detection_boxes'),
#         grpcclient.InferRequestedOutput('detection_scores'),
#         grpcclient.InferRequestedOutput('detection_classes')
#     ]

#     results = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs)

#     num_detections = results.as_numpy('num_detections')
#     detection_boxes = results.as_numpy('detection_boxes')
#     detection_scores = results.as_numpy('detection_scores')
#     detection_classes = results.as_numpy('detection_classes')
#     return num_detections, detection_boxes, detection_scores, detection_classes

# def main(video_path, model_name, url):
#     triton_client = get_triton_client(url)
#     expected_image_shape = triton_client.get_model_metadata(model_name).inputs[0].shape[-2:]

#     cap = cv2.VideoCapture(video_path)
#     if not cap.isOpened():
#         print("Error: Could not open video.")
#         sys.exit()

#     fourcc = cv2.VideoWriter_fourcc(*'XVID')
#     output_path = os.path.splitext(video_path)[0] + "_output.avi"
#     out = cv2.VideoWriter(output_path, fourcc, 20.0, (int(cap.get(3)), int(cap.get(4))))

#     while True:
#         ret, frame = cap.read()
#         if not ret:
#             break

#         # Process each frame
#         output_frame = process_frame(frame, expected_image_shape, model_name, triton_client)
        
#         # Write processed frame to the output video
#         out.write(output_frame)

#         # Display the frame with bounding boxes
#         cv2.imshow('Video', output_frame)
#         if cv2.waitKey(1) & 0xFF == ord('q'):
#             break

#     cap.release()
#     out.release()
#     cv2.destroyAllWindows()
#     print(f"Output saved as {output_path}")

# if __name__ == '__main__':
#     parser = argparse.ArgumentParser()
#     parser.add_argument('--video_path', type=str, default='./assets/helmet.mp4')
#     parser.add_argument('--model_name', type=str, default='yolov8_ensemble')
#     parser.add_argument('--url', type=str, default='104.192.4.139:8001')
#     args = parser.parse_args()
#     main(args.video_path, args.model_name, args.url)
import numpy as np
import cv2
import tritonclient.grpc as grpcclient
import sys
import argparse
import os

# Class names for the dataset
class_names = [
    'helm',
    'no_helm',
    "person"
]

def get_triton_client(url: str = 'localhost:8001'):
    keepalive_options = grpcclient.KeepAliveOptions(
        keepalive_time_ms=2**31 - 1,
        keepalive_timeout_ms=20000,
        keepalive_permit_without_calls=False,
        http2_max_pings_without_data=2
    )
    return grpcclient.InferenceServerClient(url=url, verbose=False, keepalive_options=keepalive_options)

def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
    label = f'{class_names[class_id]}: {confidence:.2f}'
    color = (255, 0, 0)
    cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
    cv2.putText(img, label, (x - 10, y - 10),
                cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)

def process_frame(frame, expected_image_shape, model_name, triton_client):
    original_image, input_image, scale = preprocess_frame(frame, expected_image_shape)
    num_detections, detection_boxes, detection_scores, detection_classes = run_inference(
        model_name, input_image, triton_client)

    for index in range(num_detections[0]):
        box = detection_boxes[index]
        draw_bounding_box(original_image,
                          detection_classes[index],
                          detection_scores[index],
                          round(box[0] * scale),
                          round(box[1] * scale),
                          round((box[0] + box[2]) * scale),
                          round((box[1] + box[3]) * scale))
    return original_image

def preprocess_frame(frame, expected_image_shape):
    expected_width, expected_height = expected_image_shape
    height, width, _ = frame.shape
    length = max(height, width)
    image = np.zeros((length, length, 3), np.uint8)
    image[0:height, 0:width] = frame
    scale = length / min(expected_image_shape)

    input_image = cv2.resize(image, (expected_width, expected_height))
    input_image = (input_image / 255.0).astype(np.float32)
    input_image = input_image.transpose(2, 0, 1)  # Channel first
    input_image = np.expand_dims(input_image, axis=0)
    return frame, input_image, scale

def run_inference(model_name: str, input_image: np.ndarray, triton_client: grpcclient.InferenceServerClient):
    inputs = [grpcclient.InferInput('images', input_image.shape, "FP32")]
    inputs[0].set_data_from_numpy(input_image)

    outputs = [
        grpcclient.InferRequestedOutput('num_detections'),
        grpcclient.InferRequestedOutput('detection_boxes'),
        grpcclient.InferRequestedOutput('detection_scores'),
        grpcclient.InferRequestedOutput('detection_classes')
    ]

    results = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs)

    num_detections = results.as_numpy('num_detections')
    detection_boxes = results.as_numpy('detection_boxes')
    detection_scores = results.as_numpy('detection_scores')
    detection_classes = results.as_numpy('detection_classes')
    return num_detections, detection_boxes, detection_scores, detection_classes

def main(video_path, model_name, url):
    triton_client = get_triton_client(url)
    expected_image_shape = triton_client.get_model_metadata(model_name).inputs[0].shape[-2:]

    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        print("Error: Could not open video.")
        sys.exit()

    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    output_path = os.path.splitext(video_path)[0] + "_output.avi"
    out = cv2.VideoWriter(output_path, fourcc, 20.0, (int(cap.get(3)), int(cap.get(4))))

    while True:
        ret, frame = cap.read()
        if not ret:
            break

        # Process each frame
        output_frame = process_frame(frame, expected_image_shape, model_name, triton_client)
        
        # Write processed frame to the output video
        out.write(output_frame)

        # Display the frame with bounding boxes
        cv2.imshow('Video', output_frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    cap.release()
    out.release()
    cv2.destroyAllWindows()
    print(f"Output saved as {output_path}")

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--video_path', type=str, default='./assets/helmet.mp4')
    parser.add_argument('--model_name', type=str, default='yolov8_ensemble')
    parser.add_argument('--url', type=str, default='localhost:8001')
    args = parser.parse_args()
    main(args.video_path, args.model_name, args.url)