File size: 7,145 Bytes
fcc36c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import numpy as np
import json
import triton_python_backend_utils as pb_utils
import cv2


class TritonPythonModel:
    """Your Python model must use the same class name. Every Python model

    that is created must have "TritonPythonModel" as the class name.

    """

    def initialize(self, args):
        """`initialize` is called only once when the model is being loaded.

        Implementing `initialize` function is optional. This function allows

        the model to intialize any state associated with this model.

        Parameters

        ----------

        args : dict

          Both keys and values are strings. The dictionary keys and values are:

          * model_config: A JSON string containing the model configuration

          * model_instance_kind: A string containing model instance kind

          * model_instance_device_id: A string containing model instance device ID

          * model_repository: Model repository path

          * model_version: Model version

          * model_name: Model name

        """

        # You must parse model_config. JSON string is not parsed here
        self.model_config = model_config = json.loads(args['model_config'])

        # Get OUTPUT0 configuration
        num_detections_config = pb_utils.get_output_config_by_name(
            model_config, "num_detections")
        detection_boxes_config = pb_utils.get_output_config_by_name(
            model_config, "detection_boxes")

        detection_scores_config = pb_utils.get_output_config_by_name(
            model_config, "detection_scores")

        detection_classes_config = pb_utils.get_output_config_by_name(
            model_config, "detection_classes")

        # Convert Triton types to numpy types
        self.num_detections_dtype = pb_utils.triton_string_to_numpy(
            num_detections_config['data_type'])

        # Convert Triton types to numpy types
        self.detection_boxes_dtype = pb_utils.triton_string_to_numpy(
            detection_boxes_config['data_type'])

        # Convert Triton types to numpy types
        self.detection_scores_dtype = pb_utils.triton_string_to_numpy(
            detection_scores_config['data_type'])

        # Convert Triton types to numpy types
        self.detection_classes_dtype = pb_utils.triton_string_to_numpy(
            detection_classes_config['data_type'])

        self.score_threshold = 0.25
        self.nms_threshold = 0.45

    def execute(self, requests):
        """`execute` MUST be implemented in every Python model. `execute`

        function receives a list of pb_utils.InferenceRequest as the only

        argument. This function is called when an inference request is made

        for this model. Depending on the batching configuration (e.g. Dynamic

        Batching) used, `requests` may contain multiple requests. Every

        Python model, must create one pb_utils.InferenceResponse for every

        pb_utils.InferenceRequest in `requests`. If there is an error, you can

        set the error argument when creating a pb_utils.InferenceResponse

        Parameters

        ----------

        requests : list

          A list of pb_utils.InferenceRequest

        Returns

        -------

        list

          A list of pb_utils.InferenceResponse. The length of this list must

          be the same as `requests`

        """

        num_detections_dtype = self.num_detections_dtype
        detection_boxes_dtype = self.detection_boxes_dtype
        detection_scores_dtype = self.detection_scores_dtype
        detection_classes_dtype = self.detection_classes_dtype

        responses = []

        # Every Python backend must iterate over everyone of the requests
        # and create a pb_utils.InferenceResponse for each of them.
        for request in requests:
            # Get INPUT0
            in_0 = pb_utils.get_input_tensor_by_name(request, "INPUT_0")

            # Get the output arrays from the results
            outputs = in_0.as_numpy()

            outputs = np.array([cv2.transpose(outputs[0])])
            rows = outputs.shape[1]

            boxes = []
            scores = []
            class_ids = []
            for i in range(rows):
                classes_scores = outputs[0][i][4:]
                (minScore, maxScore, minClassLoc, (x, maxClassIndex)
                 ) = cv2.minMaxLoc(classes_scores)
                if maxScore >= self.score_threshold:
                    box = [outputs[0][i][0] -
                           (0.5 *
                            outputs[0][i][2]), outputs[0][i][1] -
                           (0.5 *
                            outputs[0][i][3]), outputs[0][i][2], outputs[0][i][3]]
                    boxes.append(box)
                    scores.append(maxScore)
                    class_ids.append(maxClassIndex)

            result_boxes = cv2.dnn.NMSBoxes(boxes, scores,
                                            self.score_threshold,
                                            self.nms_threshold,
                                            0.5)

            num_detections = 0
            output_boxes = []
            output_scores = []
            output_classids = []
            for i in range(len(result_boxes)):
                index = result_boxes[i]
                box = boxes[index]
                detection = {
                    'class_id': class_ids[index],
                    'confidence': scores[index],
                    'box': box}
                output_boxes.append(box)
                output_scores.append(scores[index])
                output_classids.append(class_ids[index])

                num_detections += 1

            num_detections = np.array(num_detections)
            num_detections = pb_utils.Tensor(
                "num_detections", num_detections.astype(num_detections_dtype))

            detection_boxes = np.array(output_boxes)
            detection_boxes = pb_utils.Tensor(
                "detection_boxes", detection_boxes.astype(detection_boxes_dtype))

            detection_scores = np.array(output_scores)
            detection_scores = pb_utils.Tensor(
                "detection_scores", detection_scores.astype(detection_scores_dtype))
            detection_classes = np.array(output_classids)
            detection_classes = pb_utils.Tensor(
                "detection_classes",
                detection_classes.astype(detection_classes_dtype))

            inference_response = pb_utils.InferenceResponse(
                output_tensors=[
                    num_detections,
                    detection_boxes,
                    detection_scores,
                    detection_classes])
            responses.append(inference_response)

        return responses

    def finalize(self):
        """`finalize` is called only once when the model is being unloaded.

        Implementing `finalize` function is OPTIONAL. This function allows

        the model to perform any necessary clean ups before exit.

        """
        pass