medical_chatbot / ingest.py
drkareemkamal's picture
Upload 5 files
e4bfc79 verified
raw
history blame contribute delete
955 Bytes
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader , DirectoryLoader
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import FAISS
DATA_PATH = "data/"
DB_FAISS_PATH = 'vectorstores/'
# create a vector database
def create_vector_db():
loader = DirectoryLoader(DATA_PATH,glob='*.pdf',loader_cls=PyPDFLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 500, chunk_overlap = 50)
texts = text_splitter.split_documents(documents)
embeddings = HuggingFaceBgeEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2',
model_kwargs = {'device':'cpu'})
db = FAISS.from_documents(texts,embeddings)
db.save_local('vectorstores/')
if __name__ == '__main__':
create_vector_db()