drkareemkamal commited on
Commit
f69b692
·
verified ·
1 Parent(s): fdb7adc

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -104
app.py DELETED
@@ -1,104 +0,0 @@
1
- #from langchain import PromptTemplate
2
- from langchain_core.prompts import PromptTemplate
3
- import os
4
- from langchain_community.embeddings import HuggingFaceBgeEmbeddings
5
- from langchain_community.vectorstores import FAISS
6
- from langchain_community.llms.ctransformers import CTransformers
7
- #from langchain.chains import RetrievalQA
8
- from langchain.chains.retrieval_qa.base import RetrievalQA
9
-
10
- DB_FAISS_PATH = 'vectorstores/'
11
-
12
- custom_prompt_template = '''use the following pieces of information to answer the user's questions.
13
- If you don't know the answer, please just say that don't know the answer, don't try to make uo an answer.
14
- Context : {context}
15
- Question : {question}
16
- only return the helpful answer below and nothing else.
17
- '''
18
-
19
- def set_custom_prompt():
20
- """
21
- Prompt template for QA retrieval for vector stores
22
- """
23
- prompt = PromptTemplate(template = custom_prompt_template,
24
- input_variables = ['context','question'])
25
-
26
- return prompt
27
-
28
-
29
- def load_llm():
30
- llm = CTransformers(
31
- model = 'TheBloke/Llama-2-7B-Chat-GGML',
32
- #model = AutoModel.from_pretrained("TheBloke/Llama-2-7B-Chat-GGML"),
33
- model_type = 'llama',
34
- max_new_token = 512,
35
- temperature = 0.5
36
- )
37
- return llm
38
-
39
- def retrieval_qa_chain(llm,prompt,db):
40
- qa_chain = RetrievalQA.from_chain_type(
41
- llm = llm,
42
- chain_type = 'stuff',
43
- retriever = db.as_retriever(search_kwargs= {'k': 2}),
44
- return_source_documents = True,
45
- chain_type_kwargs = {'prompt': prompt}
46
- )
47
-
48
- return qa_chain
49
-
50
- def qa_bot():
51
- embeddings = HuggingFaceBgeEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2',
52
- model_kwargs = {'device':'cpu'})
53
-
54
-
55
- db = FAISS.load_local(DB_FAISS_PATH, embeddings,allow_dangerous_deserialization=True)
56
- llm = load_llm()
57
- qa_prompt = set_custom_prompt()
58
- qa = retrieval_qa_chain(llm,qa_prompt, db)
59
-
60
- return qa
61
-
62
- def final_result(query):
63
- qa_result = qa_bot()
64
- response = qa_result({'query' : query})
65
-
66
- return response
67
-
68
-
69
- import streamlit as st
70
-
71
- # Initialize the bot
72
- bot = qa_bot()
73
-
74
- # def process_query(query):
75
- # # Here you would include the logic to process the query and return a response
76
- # response, sources = bot.answer_query(query) # Modify this according to your bot implementation
77
- # if sources:
78
- # response += f"\nSources: {', '.join(sources)}"
79
- # else:
80
- # response += "\nNo Sources Found"
81
- # return response
82
- def process_query(query):
83
- # Here you would include the logic to process the query and return a response
84
- response = bot({'query': query})
85
- response_text = response['result']
86
- sources = response.get('source_documents', [])
87
- if sources:
88
- source_list = ', '.join([source.metadata['source'] for source in sources])
89
- response_text += f"\nSources: {source_list}"
90
- #st.write(response_text)
91
- else:
92
- response_text += "\nNo Sources Found"
93
- #st.write(response_text)
94
- return response_text
95
-
96
-
97
- # Setting up the Streamlit app
98
- st.title('Medical Chatbot')
99
-
100
- user_input = st.text_input("Hi, welcome to the medical Bot. What is your query?")
101
-
102
- if user_input:
103
- output = process_query(user_input)
104
- st.text_area("Response", output, height=300)