File size: 5,355 Bytes
d4ddbea
 
 
 
 
 
 
 
 
9915d11
d4ddbea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52a148f
 
eb6f2d9
 
52a148f
 
 
d4ddbea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import streamlit as st
from langchain_community.document_loaders import PDFPlumberLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.chains import LLMChain
from langchain.llms import CTransformers
from langchain.llms import HuggingFaceHub
import torch

# ==== Configuration ====
pdfs_directory = 'pdfs'
vectorstores_directory = 'vectorstores_medical'
os.makedirs(pdfs_directory, exist_ok=True)
os.makedirs(vectorstores_directory, exist_ok=True)

PREDEFINED_BOOKS = [f for f in os.listdir(pdfs_directory) if f.endswith(".pdf")]

TEMPLATE = """
You are a medical assistant with deep clinical knowledge. 
Use the following retrieved context to answer the question.
If unsure, say "I don't know." Keep answers accurate, concise, and clear.

Question: {question}
Context: {context}
Answer:
"""

# ==== Embedding Model (Medical) ====
embedding_model = HuggingFaceEmbeddings(
    model_name='pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb',
    model_kwargs={"device": "cuda" if torch.cuda.is_available() else "cpu"},
    encode_kwargs={"normalize_embeddings": False}
)

# ==== LLM (Local Quantized Medical Model) ====
# llm = CTransformers(
#     model='TheBloke/MedAlpaca-7B-GGUF',
#     model_file='medalpaca-7b.Q4_K_M.gguf',
#     model_type='llama',
#     config={'max_new_tokens': 512, 'temperature': 0.4}
# )


llm = HuggingFaceHub(
    repo_id="epfl-llm/meditron-7b",  # Or BioGPT, GatorTron, ClinicalT5, etc.
    model_kwargs={"temperature": 0.4, "max_new_tokens": 512},
    # repo_id="microsoft/BioGPT-Large",
    # model_kwargs={"temperature": 0.4, "max_new_tokens": 512},
    # repo_id="emilyalsentzer/Bio_ClinicalBERT",  # Encoder-only, fast
    # model_kwargs={"temperature": 0.3, "max_new_tokens": 256},
    huggingfacehub_api_token=os.getenv('hf_token')
)

# ==== Helpers ====
def split_text(documents):
    splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
        add_start_index=True
    )
    return splitter.split_documents(documents)

def get_vectorstore_path(book_filename):
    base_name = os.path.splitext(book_filename)[0]
    return os.path.join(vectorstores_directory, base_name)

def load_or_create_vectorstore(book_filename, documents=None):
    vs_path = get_vectorstore_path(book_filename)

    if os.path.exists(os.path.join(vs_path, "index.faiss")):
        return FAISS.load_local(vs_path, embedding_model, allow_dangerous_deserialization=True)

    if documents is None:
        raise ValueError("Documents required to create vector store.")

    with st.spinner(f"⏳ Creating vector store for '{book_filename}'..."):
        os.makedirs(vs_path, exist_ok=True)
        chunks = split_text(documents)
        vector_store = FAISS.from_documents(chunks, embedding_model)
        vector_store.save_local(vs_path)
        st.success(f"βœ… Vector store created for '{book_filename}'.")
    return vector_store

def retrieve_docs(vector_store, query):
    return vector_store.similarity_search(query)

def answer_question(question, documents):
    context = "\n\n".join(doc.page_content for doc in documents)
    prompt = ChatPromptTemplate.from_template(TEMPLATE)
    chain = LLMChain(llm=llm, prompt=prompt)
    return chain.run({"question": question, "context": context})

def upload_pdf(file):
    save_path = os.path.join(pdfs_directory, file.name)
    with open(save_path, "wb") as f:
        f.write(file.getbuffer())
    return file.name

def load_pdf(file_path):
    loader = PDFPlumberLoader(file_path)
    return loader.load()

# ==== Streamlit App ====
st.set_page_config(page_title="🩺 Medical PDF Chat", layout="centered")
st.title("πŸ“š Medical Assistant - PDF Q&A")

with st.sidebar:
    st.header("Select or Upload a Medical Book")
    selected_book = st.selectbox("Choose a PDF", PREDEFINED_BOOKS + ["Upload new book"])

    if selected_book == "Upload new book":
        uploaded_file = st.file_uploader("Upload Medical PDF", type="pdf")
        if uploaded_file:
            filename = upload_pdf(uploaded_file)
            st.success(f"πŸ“₯ Uploaded: {filename}")
            selected_book = filename

# ==== Main Logic ====
if selected_book and selected_book != "Upload new book":
    st.info(f"πŸ“– You selected: {selected_book}")
    file_path = os.path.join(pdfs_directory, selected_book)
    vectorstore_path = get_vectorstore_path(selected_book)

    try:
        if os.path.exists(os.path.join(vectorstore_path, "index.faiss")):
            st.success("βœ… Vector store already exists. Using cached version.")
            vector_store = load_or_create_vectorstore(selected_book)
        else:
            documents = load_pdf(file_path)
            vector_store = load_or_create_vectorstore(selected_book, documents)

        # Chat Input
        question = st.chat_input("Ask your medical question...")
        if question:
            st.chat_message("user").write(question)
            related_docs = retrieve_docs(vector_store, question)
            answer = answer_question(question, related_docs)
            st.chat_message("assistant").write(answer)

    except Exception as e:
        st.error(f"❌ Error loading or processing the PDF: {e}")