Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,44 +5,61 @@ Diabetes Version
|
|
5 |
@email: [email protected]
|
6 |
"""
|
7 |
|
8 |
-
# Import necessary libraries
|
9 |
import streamlit as st
|
10 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
|
11 |
from openai import OpenAI
|
12 |
import os
|
13 |
-
import
|
14 |
-
from
|
15 |
-
|
16 |
|
17 |
-
|
|
|
18 |
client = OpenAI(
|
19 |
base_url="https://api-inference.huggingface.co/v1",
|
20 |
-
|
|
|
21 |
)
|
22 |
|
23 |
-
|
24 |
-
if api_token:
|
25 |
-
login(token=api_token)
|
26 |
-
else:
|
27 |
-
st.error("API token is not set in the environment variables.")
|
28 |
-
|
29 |
-
# Define model links
|
30 |
model_links = {
|
31 |
-
"HAH
|
|
|
32 |
}
|
33 |
|
34 |
-
#
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
# Display welcome message
|
38 |
-
st.title("Welcome to HAH-2024-v0.1")
|
39 |
|
40 |
-
# Sidebar setup
|
41 |
-
temp_values = st.sidebar.slider("Select a temperature value", 0.0, 1.0, (0.5))
|
42 |
def reset_conversation():
|
|
|
|
|
|
|
43 |
st.session_state.conversation = []
|
44 |
st.session_state.messages = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
|
|
|
|
|
|
|
|
|
|
46 |
st.sidebar.button("Reset Chat", on_click=reset_conversation)
|
47 |
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
48 |
st.sidebar.image("https://www.hmgaihub.com/untitled.png")
|
@@ -50,89 +67,61 @@ st.sidebar.markdown("*Generated content may be inaccurate or false.*")
|
|
50 |
st.sidebar.markdown("*This is an under development project.*")
|
51 |
st.sidebar.markdown("*Not a replacement for medical advice from a doctor.*")
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
# Additional configurations and training enhancements
|
77 |
-
model.config.use_cache = False
|
78 |
-
model = prepare_model_for_kbit_training(model)
|
79 |
-
|
80 |
-
# If using PEFT or other enhancements, configure here
|
81 |
-
peft_config = LoraConfig(
|
82 |
-
lora_alpha=16,
|
83 |
-
lora_dropout=0.1,
|
84 |
-
r=64,
|
85 |
-
bias="none",
|
86 |
-
task_type="CAUSAL_LM",
|
87 |
-
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj"],
|
88 |
-
)
|
89 |
-
model = get_peft_model(model, peft_config)
|
90 |
-
|
91 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
92 |
-
"mistralai/Mistral-7B-Instruct-v0.2", trust_remote_code=True
|
93 |
-
)
|
94 |
-
|
95 |
-
# Clear the loading message
|
96 |
-
loading_message.success("Model is ready. Now we are ready!")
|
97 |
-
|
98 |
-
return model, tokenizer
|
99 |
-
|
100 |
-
|
101 |
-
# Load model and tokenizer
|
102 |
-
model, tokenizer = load_model(selected_model)
|
103 |
-
|
104 |
-
# Chat application logic
|
105 |
if "messages" not in st.session_state:
|
106 |
st.session_state.messages = []
|
107 |
|
|
|
|
|
108 |
for message in st.session_state.messages:
|
109 |
with st.chat_message(message["role"]):
|
110 |
st.markdown(message["content"])
|
111 |
|
112 |
-
|
|
|
|
|
|
|
|
|
113 |
with st.chat_message("user"):
|
114 |
st.markdown(prompt)
|
115 |
-
|
116 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
117 |
|
118 |
-
|
119 |
-
Act as a highly knowledgeable doctor with special interest in diabetes, skilled at explaining complex medical information in a way that is easy to understand for patients without a medical background. Your responses should not only demonstrate empathy and care but also uphold a high standard of medical accuracy and reliability. Respond precisely to what the patient needs in a professional, accurate, and reassuring manner, avoiding any unnecessary information.
|
120 |
-
"""
|
121 |
-
|
122 |
-
full_prompt = f"<s>[INST] {prompt} [/INST] {instructions}</s>"
|
123 |
-
|
124 |
with st.chat_message("assistant"):
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
st.
|
137 |
-
|
138 |
-
|
|
|
5 |
@email: [email protected]
|
6 |
"""
|
7 |
|
|
|
8 |
import streamlit as st
|
|
|
9 |
from openai import OpenAI
|
10 |
import os
|
11 |
+
import sys
|
12 |
+
from dotenv import load_dotenv, dotenv_values
|
13 |
+
load_dotenv()
|
14 |
|
15 |
+
|
16 |
+
# initialize the client
|
17 |
client = OpenAI(
|
18 |
base_url="https://api-inference.huggingface.co/v1",
|
19 |
+
# "hf_xxx" # Replace with your token
|
20 |
+
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')
|
21 |
)
|
22 |
|
23 |
+
# Create supported models
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
model_links = {
|
25 |
+
"HAH v0.1": "drmasad/HAH-2024-v0.11",
|
26 |
+
"Mistral": "mistralai/Mistral-7B-Instruct-v0.2",
|
27 |
}
|
28 |
|
29 |
+
# Pull info about the model to display
|
30 |
+
model_info = {
|
31 |
+
"HAH v0.1":
|
32 |
+
{'description': """HAH 0.1 is a fine tuned model based on Mistral 7b instruct.\n \
|
33 |
+
\nIt was created by Dr M. As'ad using 250k dB rows sourced from open source articles on diabetes** \n""",
|
34 |
+
'logo': 'https://www.hmgaihub.com/untitled.png'},
|
35 |
+
"Mistral":
|
36 |
+
{'description': """The Mistral model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
|
37 |
+
\nIt was created by the [**Mistral AI**](https://mistral.ai/news/announcing-mistral-7b/) team as has over **7 billion parameters.** \n""",
|
38 |
+
'logo': 'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'},
|
39 |
+
|
40 |
+
}
|
41 |
|
|
|
|
|
42 |
|
|
|
|
|
43 |
def reset_conversation():
|
44 |
+
'''
|
45 |
+
Resets Conversation
|
46 |
+
'''
|
47 |
st.session_state.conversation = []
|
48 |
st.session_state.messages = []
|
49 |
+
return None
|
50 |
+
|
51 |
+
|
52 |
+
# Define the available models
|
53 |
+
models = [key for key in model_links.keys()]
|
54 |
+
|
55 |
+
# Create the sidebar with the dropdown for model selection
|
56 |
+
selected_model = st.sidebar.selectbox("Select Model", models)
|
57 |
|
58 |
+
# Create a temperature slider
|
59 |
+
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))
|
60 |
+
|
61 |
+
|
62 |
+
# Create model description
|
63 |
st.sidebar.button("Reset Chat", on_click=reset_conversation)
|
64 |
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
65 |
st.sidebar.image("https://www.hmgaihub.com/untitled.png")
|
|
|
67 |
st.sidebar.markdown("*This is an under development project.*")
|
68 |
st.sidebar.markdown("*Not a replacement for medical advice from a doctor.*")
|
69 |
|
70 |
+
|
71 |
+
if "prev_option" not in st.session_state:
|
72 |
+
st.session_state.prev_option = selected_model
|
73 |
+
|
74 |
+
if st.session_state.prev_option != selected_model:
|
75 |
+
st.session_state.messages = []
|
76 |
+
# st.write(f"Changed to {selected_model}")
|
77 |
+
st.session_state.prev_option = selected_model
|
78 |
+
reset_conversation()
|
79 |
+
|
80 |
+
|
81 |
+
# Pull in the model we want to use
|
82 |
+
repo_id = model_links[selected_model]
|
83 |
+
|
84 |
+
|
85 |
+
st.subheader(f'AI - {selected_model}')
|
86 |
+
# st.title(f'ChatBot Using {selected_model}')
|
87 |
+
|
88 |
+
# Set a default model
|
89 |
+
if selected_model not in st.session_state:
|
90 |
+
st.session_state[selected_model] = model_links[selected_model]
|
91 |
+
|
92 |
+
# Initialize chat history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
if "messages" not in st.session_state:
|
94 |
st.session_state.messages = []
|
95 |
|
96 |
+
|
97 |
+
# Display chat messages from history on app rerun
|
98 |
for message in st.session_state.messages:
|
99 |
with st.chat_message(message["role"]):
|
100 |
st.markdown(message["content"])
|
101 |
|
102 |
+
|
103 |
+
# Accept user input
|
104 |
+
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
|
105 |
+
|
106 |
+
# Display user message in chat message container
|
107 |
with st.chat_message("user"):
|
108 |
st.markdown(prompt)
|
109 |
+
# Add user message to chat history
|
110 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
111 |
|
112 |
+
# Display assistant response in chat message container
|
|
|
|
|
|
|
|
|
|
|
113 |
with st.chat_message("assistant"):
|
114 |
+
stream = client.chat.completions.create(
|
115 |
+
model=model_links[selected_model],
|
116 |
+
messages=[
|
117 |
+
{"role": m["role"], "content": m["content"]}
|
118 |
+
for m in st.session_state.messages
|
119 |
+
],
|
120 |
+
temperature=temp_values, # 0.5,
|
121 |
+
stream=True,
|
122 |
+
max_tokens=3000,
|
123 |
+
)
|
124 |
+
|
125 |
+
response = st.write_stream(stream)
|
126 |
+
st.session_state.messages.append(
|
127 |
+
{"role": "assistant", "content": response})
|