Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -37,30 +37,52 @@ st.sidebar.button("Reset Chat", on_click=reset_conversation)
|
|
37 |
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
38 |
st.sidebar.image("https://www.hmgaihub.com/untitled.png")
|
39 |
|
40 |
-
# Function to load model
|
41 |
def load_model(selected_model_name):
|
42 |
model_name = model_links[selected_model_name]
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
bnb_config = BitsAndBytesConfig(
|
45 |
load_in_4bit=True,
|
46 |
bnb_4bit_quant_type="nf4",
|
47 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
48 |
bnb_4bit_use_double_quant=False,
|
49 |
-
llm_int8_enable_fp32_cpu_offload=True
|
50 |
)
|
51 |
-
|
|
|
|
|
|
|
52 |
model = AutoModelForCausalLM.from_pretrained(
|
53 |
-
model_name,
|
54 |
-
|
|
|
|
|
55 |
)
|
|
|
56 |
model.config.use_cache = False
|
57 |
model = prepare_model_for_kbit_training(model)
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
model = get_peft_model(model, peft_config)
|
61 |
-
|
|
|
|
|
|
|
|
|
62 |
return model, tokenizer
|
63 |
|
|
|
64 |
# Load model and tokenizer
|
65 |
model, tokenizer = load_model(selected_model)
|
66 |
|
|
|
37 |
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
38 |
st.sidebar.image("https://www.hmgaihub.com/untitled.png")
|
39 |
|
|
|
40 |
def load_model(selected_model_name):
|
41 |
model_name = model_links[selected_model_name]
|
42 |
+
|
43 |
+
# Set a specific device
|
44 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
45 |
+
|
46 |
+
# Load model with device mapping
|
47 |
bnb_config = BitsAndBytesConfig(
|
48 |
load_in_4bit=True,
|
49 |
bnb_4bit_quant_type="nf4",
|
50 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
51 |
bnb_4bit_use_double_quant=False,
|
52 |
+
llm_int8_enable_fp32_cpu_offload=True,
|
53 |
)
|
54 |
+
|
55 |
+
device_map = {"": device} # Default device for all components
|
56 |
+
|
57 |
+
# Load model with proper device mapping
|
58 |
model = AutoModelForCausalLM.from_pretrained(
|
59 |
+
model_name,
|
60 |
+
quantization_config=bnb_config,
|
61 |
+
device_map=device_map, # Assign device
|
62 |
+
trust_remote_code=True,
|
63 |
)
|
64 |
+
|
65 |
model.config.use_cache = False
|
66 |
model = prepare_model_for_kbit_training(model)
|
67 |
+
|
68 |
+
peft_config = LoraConfig(
|
69 |
+
lora_alpha=16,
|
70 |
+
lora_dropout=0.1,
|
71 |
+
r=64,
|
72 |
+
bias="none",
|
73 |
+
task_type="CAUSAL_LM",
|
74 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj"],
|
75 |
+
)
|
76 |
+
|
77 |
model = get_peft_model(model, peft_config)
|
78 |
+
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
80 |
+
"mistralai/Mistral-7B-Instruct-v0.2", trust_remote_code=True
|
81 |
+
)
|
82 |
+
|
83 |
return model, tokenizer
|
84 |
|
85 |
+
|
86 |
# Load model and tokenizer
|
87 |
model, tokenizer = load_model(selected_model)
|
88 |
|