Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ import torch
|
|
7 |
from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model
|
8 |
from huggingface_hub import login
|
9 |
|
10 |
-
|
11 |
# Initialize the OpenAI client (if needed for Hugging Face Inference API)
|
12 |
client = OpenAI(
|
13 |
base_url="https://api-inference.huggingface.co/v1",
|
@@ -15,7 +14,6 @@ client = OpenAI(
|
|
15 |
)
|
16 |
|
17 |
api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
18 |
-
|
19 |
if api_token:
|
20 |
login(token=api_token)
|
21 |
else:
|
@@ -23,15 +21,11 @@ else:
|
|
23 |
|
24 |
# Define model links and configurations
|
25 |
model_links = {
|
26 |
-
"HAH-2024-v0.1": "drmasad/HAH-2024-v0.11"
|
27 |
-
"Mistral": "mistralai/Mistral-7B-Instruct-v0.2",
|
28 |
}
|
29 |
|
30 |
# Define sidebar options
|
31 |
-
|
32 |
-
|
33 |
-
# Sidebar model selection
|
34 |
-
selected_model = st.sidebar.selectbox("Select Model", models)
|
35 |
|
36 |
# Sidebar temperature control
|
37 |
temp_values = st.sidebar.slider("Select a temperature value", 0.0, 1.0, (0.5))
|
@@ -48,102 +42,80 @@ model_info = {
|
|
48 |
"HAH-2024-v0.1": {
|
49 |
"description": "HAH-2024-v0.1 is a fine-tuned model based on Mistral 7B. It's designed for conversations on diabetes.",
|
50 |
"logo": "https://www.hmgaihub.com/untitled.png",
|
51 |
-
}
|
52 |
-
"Mistral": {
|
53 |
-
"description": "Mistral is a large language model with multi-task capabilities.",
|
54 |
-
"logo": "https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp",
|
55 |
-
},
|
56 |
}
|
57 |
|
58 |
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
59 |
st.sidebar.markdown(model_info[selected_model]["description"])
|
60 |
st.sidebar.image(model_info[selected_model]["logo"])
|
61 |
|
62 |
-
# Load the appropriate model
|
63 |
-
def load_model(
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
|
100 |
-
|
101 |
-
elif selected_model_name == "Mistral":
|
102 |
-
# Setup for Mistral 7B
|
103 |
-
model = AutoModelForCausalLM.from_pretrained(
|
104 |
-
model_links[selected_model_name]
|
105 |
-
)
|
106 |
-
tokenizer = AutoTokenizer.from_pretrained(model_links[selected_model_name])
|
107 |
|
108 |
return model, tokenizer
|
109 |
|
|
|
|
|
110 |
# Initialize chat history
|
111 |
if "messages" not in st.session_state:
|
112 |
st.session_state.messages = []
|
113 |
|
114 |
-
# Load the selected model
|
115 |
-
model, tokenizer = load_model(selected_model)
|
116 |
-
|
117 |
-
st.subheader(f"AI - {selected_model}")
|
118 |
-
|
119 |
# Display previous chat messages
|
120 |
for message in st.session_state.messages:
|
121 |
with st.chat_message(message["role"]):
|
122 |
st.markdown(message["content"])
|
123 |
|
124 |
# User input for conversation
|
125 |
-
if prompt := st.chat_input("Ask
|
126 |
-
# Display user input
|
127 |
with st.chat_message("user"):
|
128 |
st.markdown(prompt)
|
129 |
-
|
130 |
-
# Store the user message
|
131 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
132 |
-
|
133 |
-
# Generate the assistant's response
|
134 |
with st.chat_message("assistant"):
|
135 |
-
|
136 |
task="text-generation",
|
137 |
model=model,
|
138 |
tokenizer=tokenizer,
|
139 |
max_length=1024,
|
140 |
temperature=temp_values
|
141 |
-
)
|
142 |
|
143 |
-
|
144 |
-
response = result[0]["generated_text"]
|
145 |
-
|
146 |
st.markdown(response)
|
147 |
-
|
148 |
-
# Store the assistant's response
|
149 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
7 |
from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model
|
8 |
from huggingface_hub import login
|
9 |
|
|
|
10 |
# Initialize the OpenAI client (if needed for Hugging Face Inference API)
|
11 |
client = OpenAI(
|
12 |
base_url="https://api-inference.huggingface.co/v1",
|
|
|
14 |
)
|
15 |
|
16 |
api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
|
|
17 |
if api_token:
|
18 |
login(token=api_token)
|
19 |
else:
|
|
|
21 |
|
22 |
# Define model links and configurations
|
23 |
model_links = {
|
24 |
+
"HAH-2024-v0.1": "drmasad/HAH-2024-v0.11"
|
|
|
25 |
}
|
26 |
|
27 |
# Define sidebar options
|
28 |
+
selected_model = "HAH-2024-v0.1" # Directly using your model
|
|
|
|
|
|
|
29 |
|
30 |
# Sidebar temperature control
|
31 |
temp_values = st.sidebar.slider("Select a temperature value", 0.0, 1.0, (0.5))
|
|
|
42 |
"HAH-2024-v0.1": {
|
43 |
"description": "HAH-2024-v0.1 is a fine-tuned model based on Mistral 7B. It's designed for conversations on diabetes.",
|
44 |
"logo": "https://www.hmgaihub.com/untitled.png",
|
45 |
+
}
|
|
|
|
|
|
|
|
|
46 |
}
|
47 |
|
48 |
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
49 |
st.sidebar.markdown(model_info[selected_model]["description"])
|
50 |
st.sidebar.image(model_info[selected_model]["logo"])
|
51 |
|
52 |
+
# Load the appropriate model
|
53 |
+
def load_model():
|
54 |
+
model_name = model_links["HAH-2024-v0.1"]
|
55 |
+
base_model = "mistralai/Mistral-7B-Instruct-v0.2"
|
56 |
+
|
57 |
+
# Load model with quantization configuration
|
58 |
+
bnb_config = BitsAndBytesConfig(
|
59 |
+
load_in_4bit=True,
|
60 |
+
bnb_4bit_quant_type="nf4",
|
61 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
62 |
+
bnb_4bit_use_double_quant=False,
|
63 |
+
)
|
64 |
+
|
65 |
+
model = AutoModelForCausalLM.from_pretrained(
|
66 |
+
model_name,
|
67 |
+
quantization_config=bnb_config,
|
68 |
+
torch_dtype=torch.bfloat16,
|
69 |
+
device_map="auto",
|
70 |
+
trust_remote_code=True,
|
71 |
+
)
|
72 |
+
|
73 |
+
model.config.use_cache = False
|
74 |
+
model = prepare_model_for_kbit_training(model)
|
75 |
+
|
76 |
+
peft_config = LoraConfig(
|
77 |
+
lora_alpha=16,
|
78 |
+
lora_dropout=0.1,
|
79 |
+
r=64,
|
80 |
+
bias="none",
|
81 |
+
task_type="CAUSAL_LM",
|
82 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj"],
|
83 |
+
)
|
84 |
+
|
85 |
+
model = get_peft_model(model, peft_config)
|
86 |
+
|
87 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
return model, tokenizer
|
90 |
|
91 |
+
model, tokenizer = load_model()
|
92 |
+
|
93 |
# Initialize chat history
|
94 |
if "messages" not in st.session_state:
|
95 |
st.session_state.messages = []
|
96 |
|
|
|
|
|
|
|
|
|
|
|
97 |
# Display previous chat messages
|
98 |
for message in st.session_state.messages:
|
99 |
with st.chat_message(message["role"]):
|
100 |
st.markdown(message["content"])
|
101 |
|
102 |
# User input for conversation
|
103 |
+
if prompt := st.chat_input("Ask me anything about diabetes"):
|
|
|
104 |
with st.chat_message("user"):
|
105 |
st.markdown(prompt)
|
106 |
+
|
|
|
107 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
108 |
+
|
|
|
109 |
with st.chat_message("assistant"):
|
110 |
+
result = pipeline(
|
111 |
task="text-generation",
|
112 |
model=model,
|
113 |
tokenizer=tokenizer,
|
114 |
max_length=1024,
|
115 |
temperature=temp_values
|
116 |
+
)(prompt)
|
117 |
|
118 |
+
response = result[0]['generated_text']
|
|
|
|
|
119 |
st.markdown(response)
|
120 |
+
|
|
|
121 |
st.session_state.messages.append({"role": "assistant", "content": response})
|