""" HAH 2024 v0.1 Chatbot @author: Dr M As'ad @email: drmohasad@gmail.com """ import streamlit as st from openai import OpenAI import os import sys from dotenv import load_dotenv, dotenv_values load_dotenv() # initialize the client client = OpenAI( base_url="https://api-inference.huggingface.co/v1", api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') ) #Create supported models model_links ={ "HAH-2024-v0.1":"drmasad/HAH-2024-v0.11", "Mistral":"mistralai/Mistral-7B-Instruct-v0.2", } model_info ={ "HAH-2024-v0.1": {'description':"""The HAH-2024-v0.1 model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ \nIt was created by fine tuning Mistra 7b instruct usin 3000 review articles on diabetes** \n""", 'logo':'https://www.hmgaihub.com/untitled.png'}, "Mistral": {'description': """The Mistral model is a **Large Language Model (LLM)** that's able to have question and answer interactions...""", 'logo': 'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'}, } def reset_conversation(): ''' Resets Conversation ''' st.session_state.conversation = [] st.session_state.messages = [] return None # Define the available models models =[key for key in model_links.keys()] # Create the sidebar with the dropdown for model selection selected_model = st.sidebar.selectbox("Select Model", models) #Create a temperature slider temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5)) #Add reset button to clear conversation st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button # Create model description st.sidebar.write(f"You're now chatting with **{selected_model}**") st.sidebar.markdown(model_info[selected_model]['description']) st.sidebar.image(model_info[selected_model]['logo']) st.sidebar.markdown("*Generated content may be inaccurate or false.*") if "prev_option" not in st.session_state: st.session_state.prev_option = selected_model if st.session_state.prev_option != selected_model: st.session_state.messages = [] # st.write(f"Changed to {selected_model}") st.session_state.prev_option = selected_model reset_conversation() #Pull in the model we want to use repo_id = model_links[selected_model] st.subheader(f'AI - {selected_model}') # st.title(f'ChatBot Using {selected_model}') # Set a default model if selected_model not in st.session_state: st.session_state[selected_model] = model_links[selected_model] # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Accept user input if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"): # Display user message in chat message container with st.chat_message("user"): st.markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) # Display assistant response in chat message container with st.chat_message("assistant"): stream = client.chat.completions.create( model=model_links[selected_model], messages=[ {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ], temperature=temp_values,#0.5, stream=True, max_tokens=3000, ) response = st.write_stream(stream) st.session_state.messages.append({"role": "assistant", "content": response})