""" Diabetes Version @aim: Demo for testing purposes only @inquiries: Dr M As'ad @email: drmohasad@gmail.com """ import streamlit as st from openai import OpenAI import os import sys from dotenv import load_dotenv, dotenv_values load_dotenv() # initialize the client client = OpenAI( base_url="https://p7fw46eiw6xfkxvj.us-east-1.aws.endpoints.huggingface.cloud/v1/", # "hf_xxx" # Replace with your token api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') ) # Create supported models model_links = { "HAH v0.1": "drmasad/HAH-2024-v0.11", "Mistral": "mistralai/Mistral-7B-Instruct-v0.2", } # Pull info about the model to display model_info = { "HAH v0.1": {'description': """HAH 0.1 is a fine tuned model based on Mistral 7b instruct.\n \ \nIt was created by Dr M. As'ad using 250k dB rows sourced from open source articles on diabetes** \n""", 'logo': 'https://www.hmgaihub.com/untitled.png'}, "Mistral": {'description': """The Mistral model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ \nIt was created by the [**Mistral AI**](https://mistral.ai/news/announcing-mistral-7b/) team as has over **7 billion parameters.** \n""", 'logo': 'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'}, } def reset_conversation(): ''' Resets Conversation ''' st.session_state.conversation = [] st.session_state.messages = [] return None # Define the available models models = [key for key in model_links.keys()] # Create the sidebar with the dropdown for model selection selected_model = st.sidebar.selectbox("Select Model", models) # Create a temperature slider temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5)) # Create model description st.sidebar.button("Reset Chat", on_click=reset_conversation) st.sidebar.write(f"You're now chatting with **{selected_model}**") st.sidebar.image("https://www.hmgaihub.com/untitled.png") st.sidebar.markdown("*Generated content may be inaccurate or false.*") st.sidebar.markdown("*This is an under development project.*") st.sidebar.markdown("*Not a replacement for medical advice from a doctor.*") if "prev_option" not in st.session_state: st.session_state.prev_option = selected_model if st.session_state.prev_option != selected_model: st.session_state.messages = [] # st.write(f"Changed to {selected_model}") st.session_state.prev_option = selected_model reset_conversation() # Pull in the model we want to use repo_id = model_links[selected_model] st.subheader(f'AI - {selected_model}') # st.title(f'ChatBot Using {selected_model}') # Set a default model if selected_model not in st.session_state: st.session_state[selected_model] = model_links[selected_model] # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Accept user input if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"): # Display user message in chat message container with st.chat_message("user"): st.markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) # Display assistant response in chat message container with st.chat_message("assistant"): stream = client.chat.completions.create( model=model_links[selected_model], messages=[ {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ], temperature=temp_values, # 0.5, stream=True, max_tokens=3000, ) response = st.write_stream(stream) st.session_state.messages.append( {"role": "assistant", "content": response})