File size: 2,273 Bytes
5363aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a14ca86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5363aef
 
 
 
 
 
 
 
 
 
 
08e28ae
5363aef
 
a14ca86
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import gradio as gr
import os
import openai
import newspaper
import json
import re
from transformers import GPT2Tokenizer


# define the text summarizer function
def text_prompt(request, page_url, contraseña, temp):
    page = newspaper.Article(url=page_url)
    page.download()
    page.parse()

    tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

    tokens = tokenizer.tokenize(page.text)
    num_tokens = len(tokens)

    if num_tokens > 10 and num_tokens < 2000:
        openai.api_key = contraseña
        # get the response from openai API
        try:
            response = openai.Completion.create(
                engine="text-davinci-003",
                prompt=request + "\n\n" + page.text,
                max_tokens=2048,
                temperature=temp,
                top_p=0.9,
            )
            # get the response text
            response_text = response.choices[0].text
            # clean the response text
            response_text = re.sub(r'\s+', ' ', response_text)
            return response_text, num_tokens
        except Exception as e:
            return f"--- Ha ocurrido un error al procesar la solicitud: {e} ---", num_tokens
    return "--- Max number of tokens ---", num_tokens

# define the gradio interface
iface = gr.Interface(
    fn=text_prompt,
    inputs=[gr.Textbox(lines=1, placeholder="Enter your prompt here...", label="Prompt:", type="text"),
            gr.Textbox(lines=1, placeholder="Enter the URL here...", label="URL:", type="text"),
            gr.Textbox(lines=1, placeholder="Enter your API-key here...", label="API-Key:", type="password"),
            gr.Slider(0.0,1.0, value=0.3, label="Temperature:")
            ],
    outputs=[gr.Textbox(label="Output:"), gr.Textbox(label="Tokens:")],
    examples=[["Summarize the following text as a list:","https://blog.google/outreach-initiatives/google-org/our-commitment-on-using-ai-to-accelerate-progress-on-global-development-goals/","",0.3],
            ["Generate a summary of the following text. Give me an overview of main business impact from the text following this template:\n- Summary:\n- Business Impact:\n- Companies:", "https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html","",0.7]
    ]
)

iface.launch(inline=False)