Spaces:
Runtime error
Runtime error
File size: 3,635 Bytes
5363aef d310922 4ef3a98 5363aef 5f1e5e2 5363aef 5f1e5e2 5363aef 5f1e5e2 5363aef a14ca86 5f1e5e2 a14ca86 759014e a14ca86 2a6c7da 5f1e5e2 5363aef 7349a3a 5363aef 759014e 5363aef 8a074d6 bbdf328 a8c7832 7349a3a 119017e 5363aef a14ca86 e16e8bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import gradio as gr
import os
import openai
import newspaper
import json
import re
from transformers import GPT2Tokenizer
# define the text summarizer function
def text_prompt(request, page_url, contraseña, temp):
try:
page = newspaper.Article(url=page_url)
page.download()
page.parse()
except Exception as e:
return "", f"--- Ha ocurrido un error al procesar la URL: {e} ---", ""
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokens = tokenizer.tokenize(page.text)
# Recortar el texto a un máximo de 1000 tokens
num_tokens = len(tokens)
if num_tokens > 1800:
tokens = tokens[:1800]
page_text = " ".join(tokens)
if num_tokens > 10:
openai.api_key = contraseña
# get the response from openai API
try:
response = openai.Completion.create(
engine="text-davinci-003",
prompt=request + "\n\n" + page_text,
max_tokens=2048,
temperature=temp,
top_p=0.9,
)
# get the response text
response_text = response.choices[0].text
# clean the response text
response_text = re.sub(r'\s+', ' ', response_text)
return page.text, response_text, num_tokens
except Exception as e:
return page.text, f"--- Ha ocurrido un error al procesar la solicitud: {e} ---", num_tokens
return page.text, "--- Min number of tokens ---", num_tokens
# define the gradio interface
iface = gr.Interface(
fn=text_prompt,
inputs=[gr.Textbox(lines=1, placeholder="Enter your prompt here...", label="Prompt:", type="text"),
gr.Textbox(lines=1, placeholder="Enter the URL here...", label="URL to parse:", type="text"),
gr.Textbox(lines=1, placeholder="Enter your API-key here...", label="API-Key:", type="password"),
gr.Slider(0.0,1.0, value=0.3, label="Temperature:")
],
outputs=[gr.Textbox(label="Input:"), gr.Textbox(label="Output:"), gr.Textbox(label="Tokens:")],
examples=[["Summarize the following text as a list:","https://blog.google/outreach-initiatives/google-org/our-commitment-on-using-ai-to-accelerate-progress-on-global-development-goals/","",0.3],
["Generate a summary of the following text. Give me an overview of main business impact from the text following this template:\n- Summary:\n- Business Impact:\n- Companies:", "https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html","",0.7],
["Generate the next insights based on the following text. Indicates N/A if the information is not available in the text.\n- Summary:\n- Acquisition Price:\n- Why is this important for the acquirer:\n- Business Line for the acquirer:\n- Tech Focus for the acquired (list):","https://techcrunch.com/2022/09/28/eqt-acquires-billtrust-a-company-automating-the-invoice-to-cash-process-for-1-7b/","",0.3]
],
title="ChatGPT info extraction",
description="This tool allows querying the text retrieved from the URL using OpenAI's [text-davinci-003] engine.\nThe URL text can be referenced in the prompt as \"following text\".\nA GPT2 tokenizer is included to ensure that the 2000 token limit for OpenAI queries is not exceeded. Provide a prompt with your request, the url for text retrieval, your api-key and temperature to process the text."
)
# captura de errores en la integración como componente
error_message = ""
try:
iface.launch()
except Exception as e:
error_message = "An error occurred: " + str(e)
iface.outputs[1].value = error_message |