File size: 3,102 Bytes
5363aef
 
 
 
 
 
 
 
 
 
 
d310922
 
 
 
 
4ef3a98
5363aef
 
 
 
 
 
 
 
 
a14ca86
 
 
 
 
 
 
 
 
 
 
 
759014e
a14ca86
2a6c7da
 
5363aef
 
 
 
 
7349a3a
5363aef
 
 
759014e
5363aef
08e28ae
a8c7832
7349a3a
119017e
5363aef
a14ca86
e16e8bc
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import gradio as gr
import os
import openai
import newspaper
import json
import re
from transformers import GPT2Tokenizer


# define the text summarizer function
def text_prompt(request, page_url, contraseña, temp):
    try:
        page = newspaper.Article(url=page_url)
        page.download()
        page.parse()
    except Exception as e:
        return "", f"--- Ha ocurrido un error al procesar la URL: {e} ---", ""

    tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

    tokens = tokenizer.tokenize(page.text)
    num_tokens = len(tokens)

    if num_tokens > 10 and num_tokens < 2000:
        openai.api_key = contraseña
        # get the response from openai API
        try:
            response = openai.Completion.create(
                engine="text-davinci-003",
                prompt=request + "\n\n" + page.text,
                max_tokens=2048,
                temperature=temp,
                top_p=0.9,
            )
            # get the response text
            response_text = response.choices[0].text
            # clean the response text
            response_text = re.sub(r'\s+', ' ', response_text)
            return page.text, response_text, num_tokens
        except Exception as e:
            return page.text, f"--- Ha ocurrido un error al procesar la solicitud: {e} ---", num_tokens
    return page.text, "--- Max number of tokens ---", num_tokens

# define the gradio interface
iface = gr.Interface(
    fn=text_prompt,
    inputs=[gr.Textbox(lines=1, placeholder="Enter your prompt here...", label="Prompt:", type="text"),
            gr.Textbox(lines=1, placeholder="Enter the URL here...", label="URL to parse:", type="text"),
            gr.Textbox(lines=1, placeholder="Enter your API-key here...", label="API-Key:", type="password"),
            gr.Slider(0.0,1.0, value=0.3, label="Temperature:")
            ],
    outputs=[gr.Textbox(label="Input:"), gr.Textbox(label="Output:"), gr.Textbox(label="Tokens:")],
    examples=[["Summarize the following text as a list:","https://blog.google/outreach-initiatives/google-org/our-commitment-on-using-ai-to-accelerate-progress-on-global-development-goals/","",0.3],
            ["Generate a summary of the following text. Give me an overview of main business impact from the text following this template:\n- Summary:\n- Business Impact:\n- Companies:", "https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html","",0.7]
    ],
    title="ChatGPT info extraction",
    description="This tool allows querying the text retrieved from the URL using OpenAI's [text-davinci-003] engine.\nThe URL text can be referenced in the prompt as \"following text\".\nA GPT2 tokenizer is included to ensure that the 2000 token limit for OpenAI queries is not exceeded. Provide a prompt with your request, the url for text retrieval, your api-key and temperature to process the text."
)

# captura de errores en la integración como componente

error_message = ""

try:
    iface.launch()
except Exception as e:
    error_message = "An error occurred: " + str(e)
    iface.outputs[1].value = error_message