File size: 10,101 Bytes
846e270
 
9cf8e68
 
ff51e6e
9cf8e68
f792b11
 
9cf8e68
ff51e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f792b11
 
 
 
 
 
9cf8e68
f792b11
 
9cf8e68
f792b11
 
 
 
 
 
 
 
 
 
 
 
 
9cf8e68
f792b11
 
 
 
 
9cf8e68
f792b11
 
 
 
 
 
 
 
 
9cf8e68
f792b11
9cf8e68
 
 
 
 
 
f792b11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293bbd
f792b11
 
 
 
 
ff51e6e
 
 
f792b11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff51e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f792b11
 
 
 
 
 
 
 
 
 
 
 
 
3293bbd
 
f792b11
 
e82df87
f792b11
9cf8e68
69b90ae
9cf8e68
ff51e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cf8e68
 
ff51e6e
 
f792b11
ff51e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f792b11
ff51e6e
f792b11
ff51e6e
 
 
 
 
9cf8e68
f792b11
9cf8e68
f792b11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cf8e68
 
 
f792b11
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
from dotenv import find_dotenv, load_dotenv
import streamlit as st
from groq import Groq
import base64

# Load environment variables
load_dotenv(find_dotenv())

# Function to encode the image to a base64 string
def encode_image(uploaded_file):
    """
    Encodes an uploaded image file into a base64 string.

    Args:
        uploaded_file: The file-like object uploaded via Streamlit.

    Returns:
        str: The base64 encoded string of the image.
    """
    return base64.b64encode(uploaded_file.read()).decode('utf-8')

# Initialize the Groq client using the API key from the environment variables
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

# Set up Streamlit page configuration
st.set_page_config(
    page_icon="πŸ“ƒ",
    layout="wide",
    page_title="Groq & LLaMA3x Chat Bot"
)

# App Title
st.title("Groq Chat with LLaMA3x")

# Cache the model fetching function to improve performance
@st.cache_data
def fetch_available_models():
    """
    Fetches the available models from the Groq API.
    Returns a list of models or an empty list if there's an error.
    """
    try:
        models_response = client.models.list()
        return models_response.data
    except Exception as e:
        st.error(f"Error fetching models: {e}")
        return []

# Load available models and filter them
available_models = fetch_available_models()
filtered_models = [
    model for model in available_models if model.id.startswith('llama-3')
]

# Prepare a dictionary of model metadata
models = {
    model.id: {
        "name": model.id,
        "tokens": 4000,
        "developer": model.owned_by,
    }
    for model in filtered_models
}

# Initialize session state variables
if "messages" not in st.session_state:
    st.session_state.messages = []

if "selected_model" not in st.session_state:
    st.session_state.selected_model = None

# Sidebar: Controls
with st.sidebar:
    
    # Powered by Groq logo
    st.markdown(
        """
        <a href="https://groq.com" target="_blank" rel="noopener noreferrer">
            <img
                src="https://groq.com/wp-content/uploads/2024/03/PBG-mark1-color.svg"
                alt="Powered by Groq for fast inference."
                width="100%"
            />
        </a>
        """,
        unsafe_allow_html=True
    )
    st.markdown("---")

    # Define a function to clear messages when the model changes
    def reset_chat_on_model_change():
        st.session_state.messages = []
        st.session_state.image_used = False
        uploaded_file = None
        base64_image = None

    # Model selection dropdown
    if models:
        model_option = st.selectbox(
            "Choose a model:",
            options=list(models.keys()),
            format_func=lambda x: f"{models[x]['name']} ({models[x]['developer']})",
            on_change=reset_chat_on_model_change,  # Reset chat when model changes
        )
    else:
        st.warning("No available models to select.")
        model_option = None

    # Token limit slider
    if models:
        max_tokens_range = models[model_option]["tokens"]
        max_tokens = st.slider(
            "Max Tokens:",
            min_value=200,
            max_value=max_tokens_range,
            value=max(100, int(max_tokens_range * 0.5)),
            step=256,
            help=f"Adjust the maximum number of tokens for the response. Maximum for the selected model: {max_tokens_range}"
        )
    else:
        max_tokens = 200

    # Additional options
    stream_mode = st.checkbox("Enable Streaming", value=True)

    # Button to clear the chat
    if st.button("Clear Chat"):
        st.session_state.messages = []
        st.session_state.image_used = False

    # Initialize session state for tracking uploaded image usage
    if "image_used" not in st.session_state:
        st.session_state.image_used = False  # Flag to track image usage

    # Check if the selected model supports vision
    base64_image = None
    uploaded_file = None
    if model_option and "vision" in model_option.lower():
        st.markdown(
            "### Upload an Image"
            "\n\n*One per conversation*"
            )

        # File uploader for images (only if image hasn't been used yet)
        if not st.session_state.image_used:
            uploaded_file = st.file_uploader(
                "Upload an image for the model to process:",
                type=["png", "jpg", "jpeg"],
                help="Upload an image if the model supports vision tasks.",
                accept_multiple_files=False
            )
            if uploaded_file:
                base64_image = encode_image(uploaded_file)
                st.image(uploaded_file, caption="Uploaded Image")
    else:
        base64_image = None


    st.markdown("### Usage Summary")
    usage_box = st.empty()

    # Disclaimer
    st.markdown(
        """
        -----
        ⚠️ **Important:**  
        *The responses provided by this application are generated automatically using an AI model.  
        Users are responsible for verifying the accuracy of the information before relying on it.  
        Always cross-check facts and data for critical decisions.*
        """
    )

# Main Chat Interface
st.markdown("### Chat Interface")

# Display the chat history
for message in st.session_state.messages:
    avatar = "πŸ”‹" if message["role"] == "assistant" else "πŸ§‘β€πŸ’»"
    with st.chat_message(message["role"], avatar=avatar):
        # Check if the content is a list (text and image combined)
        if isinstance(message["content"], list):
            for item in message["content"]:
                if item["type"] == "text":
                    st.markdown(item["text"])
                elif item["type"] == "image_url":
                    # Handle base64-encoded image URLs
                    if item["image_url"]["url"].startswith("data:image"):
                        st.image(item["image_url"]["url"], caption="Uploaded Image")
                        st.session_state.image_used = True
                    else:
                        st.warning("Invalid image format or unsupported URL.")
        else:
            # For plain text content
            st.markdown(message["content"])


# Capture user input
if user_input:=st.chat_input("Enter your message here..."):
    # Append the user input to the session state
    # including the image if uploaded
    if base64_image and not st.session_state.image_used:
        # Append the user message with the image to session state
        st.session_state.messages.append(
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": user_input},
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": f"data:image/jpeg;base64,{base64_image}",
                            },
                        },
                    ],
                }
            )
        st.session_state.image_used = True
    else:
        st.session_state.messages.append({"role": "user", "content": user_input})

    # Display the uploaded image and user query in the chat
    with st.chat_message("user", avatar="πŸ§‘β€πŸ’»"):
        # Display the user input
        st.markdown(user_input)
        
        # Display the uploaded image only if it's included in the current message
        if base64_image and st.session_state.image_used:
            st.image(uploaded_file, caption="Uploaded Image")
            base64_image = None

    # Generate a response using the selected model
    try:
        full_response = ""
        usage_summary = ""

        if stream_mode:
            # Generate a response with streaming enabled
            chat_completion = client.chat.completions.create(
                model=model_option,
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],
                max_tokens=max_tokens,
                stream=True
            )

            with st.chat_message("assistant", avatar="πŸ”‹"):
                response_placeholder = st.empty()

                for chunk in chat_completion:
                    if chunk.choices[0].delta.content:
                        full_response += chunk.choices[0].delta.content
                        response_placeholder.markdown(full_response)
        else:
            # Generate a response without streaming
            chat_completion = client.chat.completions.create(
                model=model_option,
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],
                max_tokens=max_tokens,
                stream=False
            )

            response = chat_completion.choices[0].message.content
            usage_data = chat_completion.usage

            with st.chat_message("assistant", avatar="πŸ”‹"):
                st.markdown(response)
                full_response = response

            if usage_data:
                usage_summary = (
                    f"**Token Usage:**\n"
                    f"- Prompt Tokens: {usage_data.prompt_tokens}\n"
                    f"- Response Tokens: {usage_data.completion_tokens}\n"
                    f"- Total Tokens: {usage_data.total_tokens}\n\n"
                    f"**Timings:**\n"
                    f"- Prompt Time: {round(usage_data.prompt_time,5)} secs\n"
                    f"- Response Time: {round(usage_data.completion_time,5)} secs\n"
                    f"- Total Time: {round(usage_data.total_time,5)} secs"
                )

        if usage_summary:
            usage_box.markdown(usage_summary)

        # Append the assistant's response to the session state
        st.session_state.messages.append(
            {"role": "assistant", "content": full_response}
        )

    except Exception as e:
        st.error(f"Error generating the response: {e}")