Spaces:
Running
Running
File size: 10,101 Bytes
846e270 9cf8e68 ff51e6e 9cf8e68 f792b11 9cf8e68 ff51e6e f792b11 9cf8e68 f792b11 9cf8e68 f792b11 9cf8e68 f792b11 9cf8e68 f792b11 9cf8e68 f792b11 9cf8e68 f792b11 3293bbd f792b11 ff51e6e f792b11 ff51e6e f792b11 3293bbd f792b11 e82df87 f792b11 9cf8e68 69b90ae 9cf8e68 ff51e6e 9cf8e68 ff51e6e f792b11 ff51e6e f792b11 ff51e6e f792b11 ff51e6e 9cf8e68 f792b11 9cf8e68 f792b11 9cf8e68 f792b11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import os
from dotenv import find_dotenv, load_dotenv
import streamlit as st
from groq import Groq
import base64
# Load environment variables
load_dotenv(find_dotenv())
# Function to encode the image to a base64 string
def encode_image(uploaded_file):
"""
Encodes an uploaded image file into a base64 string.
Args:
uploaded_file: The file-like object uploaded via Streamlit.
Returns:
str: The base64 encoded string of the image.
"""
return base64.b64encode(uploaded_file.read()).decode('utf-8')
# Initialize the Groq client using the API key from the environment variables
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# Set up Streamlit page configuration
st.set_page_config(
page_icon="π",
layout="wide",
page_title="Groq & LLaMA3x Chat Bot"
)
# App Title
st.title("Groq Chat with LLaMA3x")
# Cache the model fetching function to improve performance
@st.cache_data
def fetch_available_models():
"""
Fetches the available models from the Groq API.
Returns a list of models or an empty list if there's an error.
"""
try:
models_response = client.models.list()
return models_response.data
except Exception as e:
st.error(f"Error fetching models: {e}")
return []
# Load available models and filter them
available_models = fetch_available_models()
filtered_models = [
model for model in available_models if model.id.startswith('llama-3')
]
# Prepare a dictionary of model metadata
models = {
model.id: {
"name": model.id,
"tokens": 4000,
"developer": model.owned_by,
}
for model in filtered_models
}
# Initialize session state variables
if "messages" not in st.session_state:
st.session_state.messages = []
if "selected_model" not in st.session_state:
st.session_state.selected_model = None
# Sidebar: Controls
with st.sidebar:
# Powered by Groq logo
st.markdown(
"""
<a href="https://groq.com" target="_blank" rel="noopener noreferrer">
<img
src="https://groq.com/wp-content/uploads/2024/03/PBG-mark1-color.svg"
alt="Powered by Groq for fast inference."
width="100%"
/>
</a>
""",
unsafe_allow_html=True
)
st.markdown("---")
# Define a function to clear messages when the model changes
def reset_chat_on_model_change():
st.session_state.messages = []
st.session_state.image_used = False
uploaded_file = None
base64_image = None
# Model selection dropdown
if models:
model_option = st.selectbox(
"Choose a model:",
options=list(models.keys()),
format_func=lambda x: f"{models[x]['name']} ({models[x]['developer']})",
on_change=reset_chat_on_model_change, # Reset chat when model changes
)
else:
st.warning("No available models to select.")
model_option = None
# Token limit slider
if models:
max_tokens_range = models[model_option]["tokens"]
max_tokens = st.slider(
"Max Tokens:",
min_value=200,
max_value=max_tokens_range,
value=max(100, int(max_tokens_range * 0.5)),
step=256,
help=f"Adjust the maximum number of tokens for the response. Maximum for the selected model: {max_tokens_range}"
)
else:
max_tokens = 200
# Additional options
stream_mode = st.checkbox("Enable Streaming", value=True)
# Button to clear the chat
if st.button("Clear Chat"):
st.session_state.messages = []
st.session_state.image_used = False
# Initialize session state for tracking uploaded image usage
if "image_used" not in st.session_state:
st.session_state.image_used = False # Flag to track image usage
# Check if the selected model supports vision
base64_image = None
uploaded_file = None
if model_option and "vision" in model_option.lower():
st.markdown(
"### Upload an Image"
"\n\n*One per conversation*"
)
# File uploader for images (only if image hasn't been used yet)
if not st.session_state.image_used:
uploaded_file = st.file_uploader(
"Upload an image for the model to process:",
type=["png", "jpg", "jpeg"],
help="Upload an image if the model supports vision tasks.",
accept_multiple_files=False
)
if uploaded_file:
base64_image = encode_image(uploaded_file)
st.image(uploaded_file, caption="Uploaded Image")
else:
base64_image = None
st.markdown("### Usage Summary")
usage_box = st.empty()
# Disclaimer
st.markdown(
"""
-----
β οΈ **Important:**
*The responses provided by this application are generated automatically using an AI model.
Users are responsible for verifying the accuracy of the information before relying on it.
Always cross-check facts and data for critical decisions.*
"""
)
# Main Chat Interface
st.markdown("### Chat Interface")
# Display the chat history
for message in st.session_state.messages:
avatar = "π" if message["role"] == "assistant" else "π§βπ»"
with st.chat_message(message["role"], avatar=avatar):
# Check if the content is a list (text and image combined)
if isinstance(message["content"], list):
for item in message["content"]:
if item["type"] == "text":
st.markdown(item["text"])
elif item["type"] == "image_url":
# Handle base64-encoded image URLs
if item["image_url"]["url"].startswith("data:image"):
st.image(item["image_url"]["url"], caption="Uploaded Image")
st.session_state.image_used = True
else:
st.warning("Invalid image format or unsupported URL.")
else:
# For plain text content
st.markdown(message["content"])
# Capture user input
if user_input:=st.chat_input("Enter your message here..."):
# Append the user input to the session state
# including the image if uploaded
if base64_image and not st.session_state.image_used:
# Append the user message with the image to session state
st.session_state.messages.append(
{
"role": "user",
"content": [
{"type": "text", "text": user_input},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
},
},
],
}
)
st.session_state.image_used = True
else:
st.session_state.messages.append({"role": "user", "content": user_input})
# Display the uploaded image and user query in the chat
with st.chat_message("user", avatar="π§βπ»"):
# Display the user input
st.markdown(user_input)
# Display the uploaded image only if it's included in the current message
if base64_image and st.session_state.image_used:
st.image(uploaded_file, caption="Uploaded Image")
base64_image = None
# Generate a response using the selected model
try:
full_response = ""
usage_summary = ""
if stream_mode:
# Generate a response with streaming enabled
chat_completion = client.chat.completions.create(
model=model_option,
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
max_tokens=max_tokens,
stream=True
)
with st.chat_message("assistant", avatar="π"):
response_placeholder = st.empty()
for chunk in chat_completion:
if chunk.choices[0].delta.content:
full_response += chunk.choices[0].delta.content
response_placeholder.markdown(full_response)
else:
# Generate a response without streaming
chat_completion = client.chat.completions.create(
model=model_option,
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
max_tokens=max_tokens,
stream=False
)
response = chat_completion.choices[0].message.content
usage_data = chat_completion.usage
with st.chat_message("assistant", avatar="π"):
st.markdown(response)
full_response = response
if usage_data:
usage_summary = (
f"**Token Usage:**\n"
f"- Prompt Tokens: {usage_data.prompt_tokens}\n"
f"- Response Tokens: {usage_data.completion_tokens}\n"
f"- Total Tokens: {usage_data.total_tokens}\n\n"
f"**Timings:**\n"
f"- Prompt Time: {round(usage_data.prompt_time,5)} secs\n"
f"- Response Time: {round(usage_data.completion_time,5)} secs\n"
f"- Total Time: {round(usage_data.total_time,5)} secs"
)
if usage_summary:
usage_box.markdown(usage_summary)
# Append the assistant's response to the session state
st.session_state.messages.append(
{"role": "assistant", "content": full_response}
)
except Exception as e:
st.error(f"Error generating the response: {e}") |