Spaces:
Sleeping
Sleeping
Create app.py test version (small scale example)
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import pandas as pd
|
4 |
+
from PIL import Image
|
5 |
+
from itertools import islice
|
6 |
+
import earthview as ev
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
# this only gets the first file in the first shard - you can download more by editing this line
|
10 |
+
filename = os.path.join("dataset", "satellogic", "train-00000-of-00065.parquet")
|
11 |
+
# this returns an iterator for all files, not sorted
|
12 |
+
# filenames = glob.glob(os.path.join("dataset", "satellogic", "*.parquet"))
|
13 |
+
|
14 |
+
# loads a dataset with pandas, this loads a single file
|
15 |
+
# for larger datasets you want to use `dask` which is significantly faster,
|
16 |
+
# but I wanted to provide a simple version which only uses dependencies that have already been imported.
|
17 |
+
data = pd.read_parquet(filename)
|
18 |
+
|
19 |
+
# transforms a metadata sample to bounds and timestamps, handling revisits
|
20 |
+
def item_to_bounds_timestamps(sample):
|
21 |
+
# unpack metadata
|
22 |
+
bounds_list = sample["metadata"]["bounds"]
|
23 |
+
timestamp_list = sample["metadata"]["timestamp"]
|
24 |
+
# each sample contains nested metadata
|
25 |
+
bounds = []
|
26 |
+
timestamps = []
|
27 |
+
# return two flat lists
|
28 |
+
for b, t in zip(bounds_list, timestamp_list):
|
29 |
+
bounds.append(b)
|
30 |
+
timestamps.append(t)
|
31 |
+
return bounds, timestamps
|
32 |
+
|
33 |
+
# Create an empty list to store ratings
|
34 |
+
ratings = []
|
35 |
+
image_id = 0 # Initialize image ID counter
|
36 |
+
bounds = []
|
37 |
+
timestamps = []
|
38 |
+
|
39 |
+
# Limit the number of images to process for the test
|
40 |
+
num_images_to_process = 5
|
41 |
+
|
42 |
+
# Iterate through the samples, display, rate, and store info
|
43 |
+
data_iter = islice(data.iterrows(), num_images_to_process)
|
44 |
+
for index, sample in data_iter:
|
45 |
+
rgb = sample["rgb"]
|
46 |
+
bounds_sample, timestamps_sample = item_to_bounds_timestamps(sample)
|
47 |
+
# iterate through the RGB images (revisits)
|
48 |
+
for i, img in enumerate(rgb):
|
49 |
+
print("Image ID:", image_id)
|
50 |
+
display(img)
|
51 |
+
|
52 |
+
# Get the rating from the user
|
53 |
+
while True:
|
54 |
+
try:
|
55 |
+
rating = int(input("Rate the image (0 or 1): "))
|
56 |
+
if rating in [0, 1]:
|
57 |
+
break
|
58 |
+
else:
|
59 |
+
print("Invalid rating. Please enter 0 or 1.")
|
60 |
+
except ValueError:
|
61 |
+
print("Invalid input. Please enter a number.")
|
62 |
+
|
63 |
+
# Store the rating and other info
|
64 |
+
ratings.append(rating)
|
65 |
+
|
66 |
+
# Store the bounds and timestamp
|
67 |
+
bounds.append(bounds_sample[i])
|
68 |
+
timestamps.append(timestamps_sample[i])
|
69 |
+
|
70 |
+
image_id += 1 # Increment image ID
|
71 |
+
|
72 |
+
# Create a DataFrame from the collected data
|
73 |
+
df = pd.DataFrame({
|
74 |
+
"image_id": range(image_id),
|
75 |
+
"rating": ratings,
|
76 |
+
"bounds": bounds,
|
77 |
+
"timestamp": timestamps
|
78 |
+
})
|
79 |
+
|
80 |
+
# Save the DataFrame to a CSV file
|
81 |
+
df.to_csv("image_ratings_test.csv", index=False)
|
82 |
+
|
83 |
+
print("Test complete. Ratings saved to image_ratings_test.csv")
|