Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,123 +1,94 @@
|
|
1 |
import gradio as gr
|
2 |
import earthview as ev
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
import random
|
|
|
6 |
import os
|
7 |
-
import json
|
8 |
-
import utils
|
9 |
-
from pandas import DataFrame
|
10 |
-
|
11 |
-
# --- Configuration ---
|
12 |
-
DATASET_SUBSET = "satellogic"
|
13 |
-
LABELED_DATA_FILE = "labeled_data.json"
|
14 |
-
SAMPLE_SEED = 10 # The seed to use when sampling the dataset for the demo.
|
15 |
|
16 |
-
#
|
17 |
-
dataset = ev.load_dataset(
|
18 |
data_iter = iter(dataset)
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
state.value = initial_state
|
104 |
-
|
105 |
-
cool_button.click(
|
106 |
-
fn=lambda image, label, state: save_labeled_data(image, label, state),
|
107 |
-
inputs=[image_component, gr.Textbox(visible=False, value="cool"), state],
|
108 |
-
outputs=[gr.Textbox(label="Debug"), image_component, table]
|
109 |
-
)
|
110 |
-
not_cool_button.click(
|
111 |
-
fn=lambda image, label, state: save_labeled_data(image, label, state),
|
112 |
-
inputs=[image_component, gr.Textbox(visible=False, value="not cool"), state],
|
113 |
-
outputs=[gr.Textbox(label="Debug"), image_component, table]
|
114 |
-
)
|
115 |
-
|
116 |
-
# --- Main Interface ---
|
117 |
-
with gr.Blocks() as demo:
|
118 |
-
gr.Markdown("# TerraNomaly")
|
119 |
-
with gr.Tabs():
|
120 |
-
with gr.TabItem("Labeling"):
|
121 |
-
labeling_ui()
|
122 |
-
|
123 |
-
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
import earthview as ev
|
3 |
+
import utils
|
|
|
4 |
import random
|
5 |
+
import pandas as pd
|
6 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Load the Satellogic dataset
|
9 |
+
dataset = ev.load_dataset("satellogic", streaming=True).shuffle(seed=42)
|
10 |
data_iter = iter(dataset)
|
11 |
|
12 |
+
# File to store labels (will create if it doesn't exist)
|
13 |
+
label_file = "labels.csv"
|
14 |
+
|
15 |
+
# Initialize a DataFrame to hold labels (or load existing)
|
16 |
+
if os.path.exists(label_file):
|
17 |
+
labels_df = pd.read_csv(label_file)
|
18 |
+
else:
|
19 |
+
labels_df = pd.DataFrame(columns=["image_id", "bounds", "rating", "google_maps_link"])
|
20 |
+
|
21 |
+
def get_next_image():
|
22 |
+
global data_iter, labels_df
|
23 |
+
|
24 |
+
while True: # Keep iterating until we find an unlabeled image
|
25 |
+
try:
|
26 |
+
sample = next(data_iter)
|
27 |
+
except StopIteration:
|
28 |
+
#refresh the dataset if we reach the end
|
29 |
+
dataset = ev.load_dataset("satellogic", streaming=True).shuffle(seed=random.randint(0, 1000000))
|
30 |
+
data_iter = iter(dataset)
|
31 |
+
continue
|
32 |
+
|
33 |
+
sample = ev.item_to_images("satellogic", sample)
|
34 |
+
image = sample["rgb"][0] # Get the first RGB image
|
35 |
+
metadata = sample["metadata"]
|
36 |
+
|
37 |
+
bounds = metadata["bounds"]
|
38 |
+
google_maps_link = utils.get_google_map_link(sample, "satellogic")
|
39 |
+
#generate a unique image ID:
|
40 |
+
image_id = (str(bounds))
|
41 |
+
|
42 |
+
# Check if image is already labeled
|
43 |
+
if image_id not in labels_df["image_id"].values:
|
44 |
+
return image, image_id, bounds, google_maps_link
|
45 |
+
|
46 |
+
def rate_image(image_id, bounds, rating, google_maps_link):
|
47 |
+
global labels_df
|
48 |
+
|
49 |
+
# Add the rating to the DataFrame
|
50 |
+
new_row = pd.DataFrame({"image_id": [image_id], "bounds": [bounds], "rating": [rating], "google_maps_link": [google_maps_link]})
|
51 |
+
labels_df = pd.concat([labels_df, new_row], ignore_index=True)
|
52 |
+
|
53 |
+
# Save the DataFrame to CSV
|
54 |
+
labels_df.to_csv(label_file, index=False)
|
55 |
+
|
56 |
+
# Get the next image and its details
|
57 |
+
next_image, next_image_id, next_bounds, next_google_maps_link = get_next_image()
|
58 |
+
|
59 |
+
return next_image, next_image_id, next_bounds, next_google_maps_link
|
60 |
+
|
61 |
+
# Define the Gradio interface
|
62 |
+
iface = gr.Interface(
|
63 |
+
fn=rate_image,
|
64 |
+
inputs=[
|
65 |
+
gr.Textbox(label="Image ID", visible=False),
|
66 |
+
gr.Textbox(label="Bounds", visible=False),
|
67 |
+
gr.Radio(["Cool", "Not Cool"], label="Rating"),
|
68 |
+
gr.Textbox(label="Google Maps Link"),
|
69 |
+
],
|
70 |
+
outputs=[
|
71 |
+
gr.Image(label="Satellite Image"),
|
72 |
+
gr.Textbox(label="Image ID", visible=False),
|
73 |
+
gr.Textbox(label="Bounds", visible=False),
|
74 |
+
gr.Textbox(label="Google Maps Link"),
|
75 |
+
],
|
76 |
+
title="TerraNomaly - Satellite Image Labeling",
|
77 |
+
description="Rate satellite images as 'Cool' or 'Not Cool'.",
|
78 |
+
live=False,
|
79 |
+
)
|
80 |
+
|
81 |
+
# Get the first image and its details
|
82 |
+
initial_image, initial_image_id, initial_bounds, initial_google_maps_link = get_next_image()
|
83 |
+
|
84 |
+
# Set the initial values for the output components
|
85 |
+
iface.launch(
|
86 |
+
share=True,
|
87 |
+
initial_outputs=[
|
88 |
+
initial_image,
|
89 |
+
initial_image_id,
|
90 |
+
initial_bounds,
|
91 |
+
initial_google_maps_link,
|
92 |
+
],
|
93 |
+
|
94 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|