import gradio as gr import earthview as ev import utils import random import pandas as pd import os from itertools import islice # Configuration chunk_size = 100 # Size of the chunks to shuffle label_file = os.path.join(os.path.dirname(__file__), "labels.csv") # Save CSV in the same directory as the script # Load the Satellogic dataset (streaming) dataset = ev.load_dataset("satellogic", streaming=True) data_iter = iter(dataset) shuffled_chunk = [] # Initialize an empty list to hold the current chunk chunk_iter = None # Initialize the chunk iterator # Initialize or load labels DataFrame if os.path.exists(label_file): labels_df = pd.read_csv(label_file) else: labels_df = pd.DataFrame(columns=["image_id", "bounds", "rating", "google_maps_link"]) def get_next_image(): global data_iter, labels_df, shuffled_chunk, chunk_iter while True: # If we don't have a current chunk or it's exhausted, get a new one if not shuffled_chunk or chunk_iter is None: chunk = list(islice(data_iter, chunk_size)) if not chunk: # If the dataset is exhausted, reset the iterator print("Dataset exhausted, resetting iterator.") data_iter = iter(ev.load_dataset("satellogic", streaming=True)) chunk = list(islice(data_iter, chunk_size)) if not chunk: print("Still no data after reset.") return None, "Dataset exhausted", None, None random.shuffle(chunk) shuffled_chunk = chunk chunk_iter = iter(shuffled_chunk) try: sample = next(chunk_iter) sample = ev.item_to_images("satellogic", sample) image = sample["rgb"][0] metadata = sample["metadata"] bounds = metadata["bounds"] google_maps_link = utils.get_google_map_link(sample, "satellogic") image_id = str(bounds) if image_id not in labels_df["image_id"].values: return image, image_id, bounds, google_maps_link except StopIteration: # Current chunk is exhausted, reset chunk variables to get a new one in the next iteration shuffled_chunk = [] chunk_iter = None def rate_image(image_id, bounds, rating): global labels_df new_row = pd.DataFrame( { "image_id": [image_id], "bounds": [bounds], "rating": [rating], "google_maps_link": [""], # this isn't necessary to pass to the function since we aren't updating it here. } ) labels_df = pd.concat([labels_df, new_row], ignore_index=True) labels_df.to_csv(label_file, index=False) next_image, next_image_id, next_bounds, next_google_maps_link = get_next_image() return next_image, next_image_id, next_bounds, next_google_maps_link # Gradio interface iface = gr.Interface( fn=rate_image, inputs=[ gr.Textbox(label="Image ID", visible=False), gr.Textbox(label="Bounds", visible=False), gr.Radio(["Cool", "Not Cool"], label="Rating"), #gr.Textbox(label="Google Maps Link"), # Remove google maps link as an input ], outputs=[ gr.Image(label="Satellite Image"), gr.Textbox(label="Image ID", visible=False), gr.Textbox(label="Bounds", visible=False), gr.Textbox(label="Google Maps Link", visible=True), # Add google maps link as an output ], title="TerraNomaly - Satellite Image Labeling", description="Rate satellite images as 'Cool' or 'Not Cool'.", live=False, ) iface.launch( share=True )