Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,30 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
-
from auto_gptq import BaseQuantizeConfig
|
4 |
import torch
|
5 |
|
6 |
# Initialize model and tokenizer
|
7 |
MODEL_NAME = "TheBloke/deepseek-coder-1.3b-instruct-GPTQ"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
model = AutoModelForCausalLM.from_pretrained(
|
11 |
MODEL_NAME,
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
16 |
)
|
17 |
|
18 |
-
def generate_text(prompt, max_length=
|
|
|
19 |
inputs = tokenizer(prompt, return_tensors="pt").to("cpu")
|
20 |
|
21 |
with torch.no_grad():
|
@@ -23,27 +32,42 @@ def generate_text(prompt, max_length=100, temperature=0.7):
|
|
23 |
**inputs,
|
24 |
max_length=max_length,
|
25 |
temperature=temperature,
|
26 |
-
pad_token_id=tokenizer.eos_token_id
|
|
|
|
|
|
|
|
|
27 |
)
|
28 |
|
29 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
30 |
|
31 |
-
# Gradio
|
32 |
-
with gr.Blocks(theme="soft") as demo:
|
33 |
-
gr.Markdown("
|
|
|
|
|
|
|
34 |
|
35 |
with gr.Row():
|
36 |
with gr.Column():
|
37 |
prompt = gr.Textbox(
|
38 |
label="Input Prompt",
|
39 |
placeholder="Enter your programming/code-related question...",
|
40 |
-
lines=5
|
|
|
|
|
41 |
)
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
45 |
|
46 |
-
output = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
submit.click(
|
49 |
fn=generate_text,
|
@@ -60,7 +84,7 @@ with gr.Blocks(theme="soft") as demo:
|
|
60 |
fn=generate_text,
|
61 |
inputs=[prompt, max_length, temperature],
|
62 |
outputs=output,
|
63 |
-
cache_examples=False
|
64 |
)
|
65 |
|
66 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GPTQConfig
|
|
|
3 |
import torch
|
4 |
|
5 |
# Initialize model and tokenizer
|
6 |
MODEL_NAME = "TheBloke/deepseek-coder-1.3b-instruct-GPTQ"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
|
8 |
|
9 |
+
# Configure GPTQ for inference
|
10 |
+
quantization_config = GPTQConfig(
|
11 |
+
bits=4, # 4-bit quantization
|
12 |
+
dataset="c4", # Required dummy dataset for config
|
13 |
+
model_seqlen=2048 # Match model's maximum context length
|
14 |
+
)
|
15 |
+
|
16 |
+
# Load model with CPU optimizations
|
17 |
model = AutoModelForCausalLM.from_pretrained(
|
18 |
MODEL_NAME,
|
19 |
+
quantization_config=quantization_config,
|
20 |
+
torch_dtype=torch.float32, # CPU-friendly precision
|
21 |
+
low_cpu_mem_usage=True,
|
22 |
+
offload_folder="offload", # Disk offloading for large layers
|
23 |
+
offload_state_dict=True # Memory-efficient state loading
|
24 |
)
|
25 |
|
26 |
+
def generate_text(prompt, max_length=150, temperature=0.7):
|
27 |
+
"""Generate text with optimized inference settings"""
|
28 |
inputs = tokenizer(prompt, return_tensors="pt").to("cpu")
|
29 |
|
30 |
with torch.no_grad():
|
|
|
32 |
**inputs,
|
33 |
max_length=max_length,
|
34 |
temperature=temperature,
|
35 |
+
pad_token_id=tokenizer.eos_token_id,
|
36 |
+
num_beams=1, # Single-beam for minimal memory
|
37 |
+
do_sample=True, # Enable sampling for creativity
|
38 |
+
top_p=0.95, # Nucleus sampling
|
39 |
+
repetition_penalty=1.1 # Reduce repetition
|
40 |
)
|
41 |
|
42 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
43 |
|
44 |
+
# Gradio Interface with Enhanced UX
|
45 |
+
with gr.Blocks(theme="soft", css=".gr-box {border-radius: 10px}") as demo:
|
46 |
+
gr.Markdown("""
|
47 |
+
# 🧠 DeepSeek Coder 1.3B Text Generator
|
48 |
+
*Optimized for CPU execution on HuggingFace Free Tier*
|
49 |
+
""")
|
50 |
|
51 |
with gr.Row():
|
52 |
with gr.Column():
|
53 |
prompt = gr.Textbox(
|
54 |
label="Input Prompt",
|
55 |
placeholder="Enter your programming/code-related question...",
|
56 |
+
lines=5,
|
57 |
+
max_lines=10,
|
58 |
+
elem_classes=["monospace"]
|
59 |
)
|
60 |
+
with gr.Row():
|
61 |
+
max_length = gr.Slider(50, 500, value=150, label="Max Length", step=10)
|
62 |
+
temperature = gr.Slider(0.1, 1.0, value=0.7, label="Creativity", step=0.05)
|
63 |
+
submit = gr.Button("🚀 Generate", variant="primary")
|
64 |
|
65 |
+
output = gr.Textbox(
|
66 |
+
label="Generated Output",
|
67 |
+
lines=12,
|
68 |
+
max_lines=20,
|
69 |
+
elem_classes=["monospace"]
|
70 |
+
)
|
71 |
|
72 |
submit.click(
|
73 |
fn=generate_text,
|
|
|
84 |
fn=generate_text,
|
85 |
inputs=[prompt, max_length, temperature],
|
86 |
outputs=output,
|
87 |
+
cache_examples=False
|
88 |
)
|
89 |
|
90 |
if __name__ == "__main__":
|