druvx13 commited on
Commit
6c47b8f
·
verified ·
1 Parent(s): 9b717fc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -59
app.py CHANGED
@@ -1,63 +1,79 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("Qwen/Qwen1.5-0.5B")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
3
+ import torch
4
+ import os
5
+
6
+ # Model loading with memory optimization
7
+ cache_dir = "./model_cache"
8
+ os.makedirs(cache_dir, exist_ok=True)
9
+
10
+ model_name = "Qwen/Qwen1.5-0.5B"
11
+
12
+ tokenizer = AutoTokenizer.from_pretrained(
13
+ model_name,
14
+ cache_dir=cache_dir,
15
+ trust_remote_code=True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  )
17
 
18
+ model = AutoModelForCausalLM.from_pretrained(
19
+ model_name,
20
+ torch_dtype=torch.float16,
21
+ cache_dir=cache_dir,
22
+ trust_remote_code=True
23
+ ).to("cuda" if torch.cuda.is_available() else "cpu")
24
+
25
+ # Generation configuration
26
+ generation_config = GenerationConfig.from_pretrained(model_name)
27
+
28
+ def generate_text(prompt, temperature, max_new_tokens):
29
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
30
+
31
+ with torch.inference_mode():
32
+ outputs = model.generate(
33
+ **inputs,
34
+ max_new_tokens=int(max_new_tokens),
35
+ temperature=float(temperature),
36
+ pad_token_id=tokenizer.eos_token_id
37
+ )
38
+
39
+ response = tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):], skip_special_tokens=True)
40
+ return response.strip()
41
+
42
+ # Gradio interface
43
+ with gr.Blocks(theme="soft", title="Qwen Text Generation") as demo:
44
+ gr.Markdown("# 🧠 Qwen1.5-0.5B Text Generation")
45
+
46
+ with gr.Row():
47
+ with gr.Column():
48
+ prompt = gr.Textbox(
49
+ label="Input Prompt",
50
+ placeholder="Enter your instruction or question...",
51
+ lines=5
52
+ )
53
+ temperature = gr.Slider(
54
+ minimum=0.1, maximum=2.0, value=0.7, step=0.1,
55
+ label="Creativity (Temperature)"
56
+ )
57
+ max_new_tokens = gr.Slider(
58
+ minimum=50, maximum=1000, value=200, step=50,
59
+ label="Max New Tokens"
60
+ )
61
+ generate_btn = gr.Button("✨ Generate", variant="primary")
62
+
63
+ with gr.Column():
64
+ output = gr.Textbox(label="Model Response", lines=10, interactive=False)
65
+
66
+ generate_btn.click(
67
+ fn=generate_text,
68
+ inputs=[prompt, temperature, max_new_tokens],
69
+ outputs=output
70
+ )
71
+
72
+ gr.Markdown("""
73
+ ### ℹ️ Tips
74
+ - Higher **temperature** = more creative/chaotic responses
75
+ - Lower **temperature** = more deterministic answers
76
+ - Adjust **max tokens** for longer/shorter outputs
77
+ """)
78
 
79
+ demo.launch()